
Optimizing Budget Constrained Spend in Search
Advertising

Chinmay Karande
∗

Aranyak Mehta Ramakrishnan Srikant
chinmayk@fb.com aranyak@google.com srikant@google.com

Google Research
Mountain View, CA, USA

ABSTRACT
Search engine ad auctions typically have a significant frac-
tion of advertisers who are budget constrained, i.e., if al-
lowed to participate in every auction that they bid on, they
would spend more than their budget. This yields an im-
portant problem: selecting the ad auctions in which these
advertisers participate, in order to optimize different system
objectives such as the return on investment for advertisers,
and the quality of ads shown to users. We present a sys-
tem and algorithms for optimizing such budget constrained
spend. The system is designed be deployed in a large search
engine, with hundreds of thousands of advertisers, millions of
searches per hour, and with the query stream being only par-
tially predictable. We have validated the system design by
implementing it in the Google ads serving system and run-
ning experiments on live traffic. We have also compared our
algorithm to previous work that casts this problem as a large
linear programming problem limited to popular queries, and
show that our algorithms yield substantially better results.

Categories and Subject Descriptors
G.1.6 [Optimization]: Linear Programming; K.6.0 [General]:
Economics

1. INTRODUCTION
Search ad auctions have emerged as the primary model for

monetizing the value provided by search engines. Advertis-
ers use phrases (keywords) to specify the set of queries they
are interested in, and bid the cost they are prepared to pay
per click on their ad. For each search query, the set of ads
to show, the order in which they are shown, and the cost
per click for each shown ad are determined via an auction.

∗The author is currently at Facebook, Inc., Menlo Park, CA,
USA. The work described in this paper was done while the
author was at Google.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’13, February 4–8, 2013, Rome, Italy.
Copyright 2013 ACM 978-1-4503-1869-3/13/02 ...$15.00.

Each advertiser also specifies a daily budget, which is an
upper bound on the amount of money they are prepared to
spend each day. While many advertisers use bids as the pri-
mary knob to control their spend and never hit their budget,
there exists a significant fraction of advertisers who would
spend more than their budget if they participated in ev-
ery auction that their keywords match. Search engines of-
ten provide an option to automatically scale the advertiser’s
bids [1, 2], but a substantial fraction of budget constrained
advertisers do not opt into these programs. For these ad-
vertisers, the search engine has to determine the subset of
auctions the budget constrained advertiser should partici-
pate in. This creates a dependence between auctions on
different queries, and leads to essentially a matching or an
assignment problem of advertisers to auctions.

In this paper, we consider the problem of optimized budget
allocation: allocating advertisers to queries such that budget
constraints are satisfied, while simultaneously optimizing a
specified objective. Prior work in this area has often chosen
revenue as the objective to optimize. However, the long term
revenue of a search engine depends on providing good value
to users and to advertisers. If users see low quality ads,
then this can result in ad-blindness and a drop in revenue.
If advertisers see low return on investment (ROI), then they
will reduce their bids and budgets, again resulting in a drop
in revenue. Thus, we explore two other objectives in this
paper: improving quality, and advertiser ROI.

Paper Outline We describe the problem of optimized bud-
get allocation in Section 2, followed by related work in Sec-
tion 3. We present our algorithms and system design in Sec-
tion 4, and discuss certain key properties of the algorithm in
Section 5. In Section 6, we show that our algorithms yield
substantially better results than prior work and also describe
the results of experiments on live traffic. We conclude with
some closing thoughts in Section 7.

2. PROBLEM DEFINITION
Let A be the set of advertisers, and Q the set of queries.

Each advertiser a ∈ A comes with a daily budget Ba. Let
G(A,Q,E) be a bipartite graph such that for a ∈ A and
q ∈ Q, edge (a, q) ∈ E means that an ad of a is eligible for
the auction for query q (a’s keywords match q). Let ctr(a,q)
be the probability of a click on a’s ad for q, and bid(a,q) be
the amount a is willing to pay per click. (Note that ctr(a,q)
is the position-independent CTR, i.e., the probability of a

click at some chosen fixed position. In other words, ctr(a,q)
does not depend on the position of the ad.)

When a query q arrives, the eligible ads a for q are ranked
by bid(a,q)ctr(a,q) and shown in that order. Denoting the
jth ad in the order as aj , the cost per click of aj is set as

cpc(aj) = bid(aj+1,q)ctr(aj+1,q)/ctr(aj ,q)

This is known as the generalized second price (GSP) auction
(see, e.g., [25, 14, 6]).

Let Ta denote the spend of the advertiser a if a partici-
pates in all the auctions for which a is eligible via the key-
word match (ignoring a’s budget). If Ta > Ba, the advertiser
is budget constrained, and the search engine has to limit (or
throttle) the set of auctions in which the advertiser partici-
pates.

Objectives. For budget constrained advertisers, the search
engine can select to optimize different objectives such as:

• the quality of the ads shown, e.g., maximize the position-
independent predicted click-through rate,

• reduce advertiser cost-per-click (maximize the number
of clicks), or

• increase advertiser ROI.

We do not have full knowledge of the graph G, but only
information from past data, i.e., the graphs from previous
days. We also require practical algorithms which work on-
line, i.e., given the next query, decide, in sub-second re-
sponse time, which ad impressions to show. We can now
define the problem as follows.

The Optimized Budget Allocation Problem: Given
information about the past as G′(A,Q′, E′) including the
bids and CTR for each advertiser-query pair, the budget
Ba, for each advertiser a, and a specified objective function
to optimize: For each query arriving in an online stream of
queries Q, decide which advertisers should participate in the
auction.

3. RELATED WORK
There have been two broad approaches to optimizing bud-

get constrained spend: allocation and bid modification. Al-
location treats bids as fixed, and allows only decisions about
whether the advertiser should participate in the auction.
This is our setting, where we are constrained to not change
bids, but only optimize allocations.

The second approach, bid modification, is in a setting
where bids can be changed. This body of work typically
considers the problem from the advertiser’s perspective, and
assumes full knowledge of the information that advertisers
typically have (such as the value of clicks or conversions).
However, this work can also be adapted to be applicable
from a search engine’s perspective, for advertisers who have
opted in and allow the search engine to change their bids.

We next describe the related work in the allocation and
bid modification approaches.

Allocation The paper by Abrams et al. [5] is the closest
to our work. They solve the offline problem (with complete
knowledge of future query frequency) for head queries (the
most popular search queries) in the GSP auction setting us-
ing a linear program (LP), to optimize search engine revenue

or advertiser clicks per dollar. Thus their approach yields
an optimal solution to the click maximization problem in
the general GSP setting. However, there are two reasons
why this work is not the final word on the allocation ap-
proach. First, the LP can only run over head queries due
to resource constraints, which brings up an interesting ques-
tion: Can a non-optimal algorithm that runs over the entire
query stream beat an optimal algorithm that is restricted to
the head? Second, the LP formulation can yield solutions
that are clearly unfair, in that the allocation for some adver-
tisers is very different from what the advertiser would choose
for themselves for that objective (see Section 5). Hence it
is unclear whether LP solutions can be deployed by search
engines.

A second stream of work focused on optimizing search en-
gine revenue in a first price auction. Mehta et al. [22] and
Buchbinder et al. [9] both provide an online approximation
algorithm for optimizing revenue, with a best possible ap-
proximation guarantee of 1− 1/e ' 63%, for the scenario in
which we do not know anything about the future distribu-
tion of queries. In contrast, we assume that we can predict
future distributions of queries, albeit noisily. Mahdian et
al. [21] extended the algorithm from [22] to provide guaran-
tees in the setting when we have unreliable estimates. [19,
13] analyzed revenue maximization in an average case set-
ting where queries arrive in a random order, or are picked
i.i.d from a distribution. All the above papers focus solely
on search engine revenue, assume a first price auction, and
do not consider multiple slots or positions. We focus on op-
timizing very different objectives, such as user experience
and advertiser ROI, in the second price GSP auction, with
multiple slots and positions.

There has been considerable related work in budget allo-
cation for display ads, e.g., [11, 12, 15, 16, 26]. This work
also does not consider second price auctions, or the objec-
tives we study.

There has also been work on designing new incentive com-
patible auctions in the presence of bidders with budget con-
straints, initiated by [4, 8]. Our goal is to optimize budgets
in the context of the GSP auction used by search engines,
and hence we do not consider alternate auction designs.

Bid Modification The second approach [7, 10, 17, 20, 24]
studies the advertiser’s problem of bidding optimally in or-
der to maximize ROI (or some notion of utility). Changing
bids in such a manner is an alternate solution to dealing with
budget constrained advertisers: if the advertiser permits, the
search engine can scale bids down until the advertiser is no
longer budget constrained. However, despite the availability
of a free option to automatically scale bids [1], a substantial
fraction of budget constrained advertisers have not opted in
to use this product. For these advertisers, the search engine
(as a policy decision) has to use the allocation approach,
not bid modification. Hence the work on bid modification,
while clearly an appealing alternative, is not applicable in
our setting.

Despite the lack of applicability, it would be interesting to
understand how optimized budget allocation fares against
bid scaling. We compare our algorithms to bid scaling in
Section 6.

4. ALGORITHMS
Given the problem of optimizing budget constrained spend,

the first step is to neither over- nor under-spend.1 The naive
way to do this is to let advertisers participate in auctions un-
til they hit their budget, and then make them ineligible for
the rest of the day. Clearly, this will yield very biased traffic
to the advertiser, and also skew auction competition towards
the earlier part of the day. The next simplest approach,
which does not have these drawbacks, is Vanilla Probabilis-
tic Throttling (VPT).

For each advertiser a, define:

• Ba: the remaining budget for the day (or time period).

• Ta: the remaining maximum spend for the rest of the
day, i.e., the total spend if the advertiser had unlimited
budget.

We now define the Vanilla Probabilistic Throttling al-
gorithm:

For each arriving query q:
For each budget constrained advertiser a:

Flip a coin with P [Heads] = Ba/Ta.
If heads, a participates in the auction.

Figure 1: Vanilla Probabilistic Throttling (VPT)

If our estimate of Ta is accurate, then each advertiser
spends very close to her budget in expectation (and with
high probability, by Chernoff bounds). Advertisers also re-
ceive a representative sample of the traffic they are eligible
for.

4.1 Optimized Throttling
We now present algorithms for optimizing one or more of

the following objectives:

• average quality of ads shown, represented by CTR.

• clicks per dollar,

• conversions per dollar,

• the advertiser’s profit, using the difference between the
bid and the cost per click as the estimate of profit.

For the chosen objective, given a candidate ad impression i
(i.e., for a specific query and advertiser), we compute a met-
ric θ(i) which tracks the desired objective. Given a choice
between two impressions (for the same advertiser), we would
prefer to show the impression with the higher value of the
metric. For example, if the objective is quality, the metric
could be the position-independent predicted click-through
rate of the advertiser for this query, reflecting our desire to
show higher-quality impressions. Conceptually, we would
like to rank all the impressions for an advertiser by the de-
sired metric, and choose the impressions with the highest
metric score until the budget is filled.

1While most advertisers are clearly budget constrained or
unconstrained, advertisers at the margin may switch back-
and-forth between the two states, based on traffic. It is
straightforward to handle these marginal cases. For ease of
exposition, we ignore this issue in the paper; however our
implementation does handle these cases gracefully.

To achieve this goal, our algorithm uses a third input,
the rank Rθ,a of an impression for a given advertiser a and
metric θ. Define

• Fθ,a(µ): Estimated fraction of maximum spend Ta for
which θ(i) ≤ µ. In other words, F is the estimated
cumulative distribution function of θ.

• Rθ,a(µ) = 1 - Fθ,a(µ).

The lower the value of the rank R, the better the impression
scores on our metric.

We now define the Optimized Throttling algorithm:

For each arriving query q:
For each budget constrained advertiser a:

If Rθ,a(θ(i)) ≤ Ba/Ta, then a
participates in the auction.

Figure 2: Algorithm OT

While the algorithm appears to be a straightforward greedy
algorithm, there are several subtleties:

• The algorithm yields a solution that is “fair” to each
advertiser (formally defined, and proved in Section 5).

• The algorithm yields an optimal fair solution under
certain constraints. While we can find many examples
where the constraints don’t hold, the constraints hold
often enough that the algorithm is not too far from
optimal in practice.

• We have transformed the domain from the space of
queries to the distribution of some property of queries.
Predicting the frequency of queries in the tail is in-
tractable. Predicting the distribution of specific prop-
erties of the queries in the tail is very tractable (for
properties we use in our algorithms).

• The choice of metric lets us optimize a wide range
of objectives, or combinations of objectives (discussed
next).

We now define five instantiations of OT, corresponding
to the four objectives we listed earlier, and a fifth objective
that combines quality and clicks:

Objective θ(i)

OT-CTR Ad quality ctri
OT-Clicks Clicks 1/cpci
OT-Profit Profit (bidi − cpci)/cpci
OT-Conversions Conversions cvrivali/cpci

OT-CTR-Profit Blend
ctri(bidi − cpci)

cpci

Figure 3: Instantiations of OT

The first metric, ctri is straightforward: we are using
position-independent predicted CTR as a proxy for qual-
ity. (Of course, one could use any arbitrary quality metric
instead of CTR.)

To understand the next three metrics, it is helpful to
multiply the numerator and denominator by the position-
dependent predicted CTR. For example, in OT-Clicks, the

numerator now becomes the expected number of clicks, and
the denominator the expected cost, and the ratio is the clicks
per dollar. Since the total spend is fixed for budget con-
strained advertisers, optimizing clicks is equivalent to opti-
mizing clicks per dollar. 2

For OT-Profit, assuming that bidi is the value to the
advertiser, bidi−cpci is the expected profit to the advertiser
if there is a click on this impression. So the metric for OT-
Profit is the expected profit per dollar of spend.

For OT-Conversions the metric is the expected conver-
sion value per dollar, given the value of a conversion on this
impression vali, and a model that predicts the conversion
rate cvri. Building machine learning models for estimat-
ing cvri is beyond the scope of the paper. However, we
will note the existence of commercial systems that estimate
cvri given advertiser-specific conversion data, e.g., [2]. Ad-
vertisers do not necessarily need to provide conversion data
in order to benefit from the techniques in the paper. One
can build models for estimating conversion rate that are not
advertiser-specific, e.g., we found that ctri is correlated with
cvri.

The final metric simply multiplies the metric for CTR
and profit. The intuition is that for advertisers with a lot of
variance on CTR but not much on profit, the algorithm will
focus on CTR. Similarly for advertisers with more variance
on profit than CTR, the algorithm will focus on profit. Thus
if the search engine cares about both CTR and advertiser
profit, the blended metric will likely yield better results than
simply averaging the results of the individual metrics.

4.2 System design and implementation
We next describe our implementation of the algorithm in

the production Google ads serving system. Our system has
three primary components:

• estimating Ba/Ta,

• estimating and compressing Rθ,a, and

• using the estimates at serving time.

We will use OT-CTR to illustrate the techniques used, and
discuss any differences between OT-CTR and the other in-
stantiations as they come up.

Estimating Ba/Ta: This component estimates the impres-
sion probability ip, where ip is defined as Ba/Ta. In other
words, ip is the probability with which we should allow an
impression of the advertiser to participate in an auction,
in order to show her impressions uniformly through the re-
mainder of the day, and exhaust her budget at the end of the
day. We estimate ip using traffic information from the past,
and using the available budget. Given the inherent noise in
traffic, a feedback loop is used at frequent intervals to adjust
the probability. Clearly, the more accurate the estimate of
ip, the more the gains from optimization.

Estimating and compressing Rθ,a: We use historical
data to compute the cumulative distribution function Fθ,a.
Rθ,a is a trivial transformation of Fθ,a. In the rest of this
section, we will drop the subscripts and refer to Rθ,a as R

2Some metrics like ctri are purely a function of the impres-
sion. However, metrics like cpc may change based on the
other ads in the auction. We discuss this issue in Section 4.2.

(purely for ease of exposition). Since a search engine has a
large number of advertisers, we would like to compress the
information in R at serving time. We compress R into a
histogram H.

Recall thatR is only used to answer the question of whether
R(θ(i)) is less than ip (= Ba/Ta). So if the estimate of ip
was very stable, we need just two buckets in the histogram
H, with the boundary at the value c∗ such that R(c∗) = ip.
With two buckets, we would need just 8 bytes of data per
budget constrained advertiser: the value c∗ and the value of
R(c∗).

We may choose to create additional buckets around the
threshold c∗, based on the tradeoff between increased gains
from choosing the highest scoring impressions (see below)
versus memory constraints. For each bucket m in H ex-
cluding the last bucket, we store the bucket boundary and
the value of R at the bucket boundary. We refer to these
histograms as throttling parameters.

Using the estimates at serving: When a query arrives,
we need to determine, for each budget constrained advertiser
a, whether a participates in the auction. The input consists
of the histogram H, the current value of ip, and the value
of θ(i) for the current impression i. Let θ(i) be in bucket
m. Let Hb(m) denote the upper boundary of bucket m, and
let Hr(m) = R(Hb(m)). Then the advertiser participates in
the auction with the following probability:

1, if Hr(m) ≤ ip

0, if Hr(m− 1) ≥ ip
ip−Hr(m−1)

Hr(m)−Hr(m−1)
, otherwise

The first two cases are straightforward, and follow directly
from the goal that we (do not) show the impression if it is
(not) in the top ip fraction of spend. In the third case, the
probability that the impression is in the top ip fraction of
spend is given by (ip−Hr(m− 1))/(Hr(m)−Hr(m− 1)),
and hence we show the impression with that probability.

Implementation: We have built our data collection pipeline
on top of Google’s sawzall [23] infrastructure, which allows
us to process historical query data in parallel. The throt-
tling parameters generated by the data collection pipeline is
written to the Google File System (GFS) [18]. The data is
stored in the protocol buffer format [3], which reduces the
storage requirement as well as make the transfer and pro-
cessing of the data more efficient. From GFS, the throttling
parameters data is picked up by the ads data push system,
which writes it to one of its data channels. The ads serving
system gets the updated throttling parameters through this
channel.

Interactions between budget constrained advertis-
ers: Out of the metrics in Figure 3, ctri, bidi, cvri and
vali are all functions purely of the impression, and do not
change based on the other ads in the auction. However,
cpci is a function of the runner-up, since we use a second-
price auction. We analyzed the logs, and found that budget
constrained ads are more likely to be next to budget uncon-
strained ads than budget unconstrained ads. However, we
will have instances with consecutive budget constrained ads.
We use an iterative technique for improving the performance
of the online algorithms in these cases.

The intuition behind the iterative technique is to run sev-

eral (simulated) iterations of the auction. In each iteration,
we compute the metric θ for each budget constrained adver-
tiser (including those that do not participate in the auction
in the current iteration), and based on the value of the met-
ric, decide whether that advertiser participates in the next
iteration. Note that an impression may be removed in one
iteration and re-enter in a subsequent iteration. While we
cannot prove convergence, in practice this often converges
in a few rounds, or at least leads to an improved solution
over simply using the value of θ from the first iteration.

5. KEY PROPERTIES OF ALGORITHM
The overall effectiveness of the algorithm depends on two

factors: the accuracy of the prediction of future traffic (total
traffic and the distribution of the metric), and the intrinsic
effectiveness of the algorithm. To understand the latter, we
analyze the algorithm on the offline version of the problem,
in which the advertiser-query graph is known. We will focus
on the instantiations with a linear objective: OT-Clicks,
OT-Profit and OT-Conversions. For non-linear objec-
tives such as CTR, optimality with even a single budget con-
strained advertiser may require allocation in a manner that
is clearly against the advertiser’s interest. So algorithms like
OT-CTR which are designed to both be good for advertisers
and improve quality cannot be optimal.

We first consider the special case of a single budget con-
strained advertiser, and show that our algorithm is optimal
for linear objectives. We then discuss the issue of fairness
when there are multiple budget constrained advertisers, and
show by example that linear programming can yield solu-
tions that are optimal but not fair. When we restrict the
space of solutions to fair solutions, we show that our algo-
rithm yields an optimal solution even with multiple budget
constrained advertisers, as long as there are no adjacent bud-
get constrained advertisers in a given auction. Obviously,
we do get adjacent budget constrained advertisers in the
real world – but the optimality result with that constraint
suggests that the algorithm will perform well in practice.

For ease of exposition, we will choose the simplest instan-
tiation, OT-Clicks as the representative algorithm in the
proofs. It is straightforward to sketch out similar proofs for
OT-Profit and OT-Conversions.

5.1 Optimal For A Single Budget Constrained
Advertiser

We start by proving that given G(A,Q,E) and a single
budget constrained advertiser a ∈ A, OT-Clicks maximizes
clicks per dollar for a. While the proof is obvious, it is useful
as a building block to more interesting results.

Given an advertiser a, we define:

• Ea to be the set of impressions in queries where a is
eligible to participate in the auction, and

• Ia ⊆ Ea to be the set of impressions where a partici-
pates in the auction.

The total expected clicks is
∑
i∈Ia αictri, where αi is the

position normalizer. For fixed budget, maximizing clicks
per dollar is the same as maximizing total clicks, which is
captured by the following linear program: Given a, find

Max
Ia⊆Ea

∑
i∈Ia

αictri , s.t.
∑
i∈Ia

spendi ≤ Ba (1)

• Rank the impressions i ∈ Ea in order of decreas-
ing 1/cpci.

• Pick the top impressions in Ea according to this
ranking until the budget runs out, i.e. the largest
prefix Ia, s.t.

∑
i∈Ia spendi ≤ Ba, and at most

one additional fractional impression to finish the
budget.

Figure 4: Offline-OT-Clicks-Single-Advertiser

Without fractional impressions, this is the integral knap-
sack problem. Since one click is a tiny fraction of adver-
tiser spend, we allow the choice of one fractional impres-
sion, thereby converting the problem to a fractional knap-
sack problem. Observing that spendi = αictricpci and
therefore αictri/spendi = 1/cpci, we get the algorithm in
Figure 4, which is a simple greedy algorithm, using the ratio
of the expected value from the click to the cost of the click.
Theorem 1 follows from the well known optimality of the
greedy strategy for the fractional knapsack problem, and its
proof is omitted here.

Theorem 1. Offline-OT-Clicks-Single-Advertiser com-
putes an optimal solution to the ROI maximization problem
for a single budget constrained advertiser.

5.2 Fair Allocations
We begin with the following definition of an optimal allo-

cation:

Definition 1. We call an allocation optimal if it maxi-
mizes ∑

a∈A wa
∑
i∈Ia αictri∑

a∈A wa

over all possible allocations (given the wa ≥ 0, which are
arbitrary advertiser specific weights).

However, this definition has the problem that in trying to
maximize the weighted average of advertiser ROI, we may
end up sacrificing the interests of some advertisers, as the
following example illustrates.

Example 1. There are two budget constrained bidders,
a and b, each with a budget of $100. There are two different
queries q1 and q2, each with 100 instances. q1 has a mini-
mum reserve cpc of $1, and q2 has a reserve of $2 (one may
replace the reserves by an unconstrained bidder, keeping the
example unchanged). The bidders bid the following values
for the queries (a does not bid on q2):

q1 q2
a 20 −
b 10 10

min 1 2

For ease of exposition, we assume that the CTR is equal
for all advertisers and query pairs, in both positions. To
maximize total clicks, or equivalently, clicks per dollar, the

optimal solution is to let a participate in q1, and b in q2.
Then a gets 100 clicks and b gets 50, giving a total of 150
clicks at a cost-per-click of $1.33. But this solution is not
fair to b, who would rather show for q1 and get a cpc of $1
and hence 100 clicks instead of 50. In this scenario a would
get only 10 clicks at a cpc of $10, giving a total of 110 clicks
at an average cpc of $1.81. 2

Example 1 motivates the following definition:

Definition 2. We define an allocation I ⊆ E to be a fair
allocation for the clicks objective, if ∀ a ∈ A:

a. The expected spend of a is equal to Ba (a exhausts its
budget), or Ia = Ea (we show every impression of a it
is eligible for).

b. Given the allocation of other advertisers (i.e. I\Ia), Ia
maximizes the total expected clicks that a can obtain
within its budget.

We call an allocation I an optimal fair allocation if it is
a fair allocation, and it maximizes∑

a∈A wa
∑
i∈Ia αictri∑

a∈A wa

among all fair allocation (where the wa ≥ 0 are arbitrary
advertiser specific weights).

We can similarly define fair allocations and optimal fair
allocations for the profit objective and the conversions ob-
jective.

In Example 1, the allocation which maximizes the sum
(giving 150 clicks) is not a fair allocation, while allocating
both a and b to q1 is (even though this reduces the total
clicks to 110). We note that our definition of fair allocation
is analogous to that of a Nash equilibrium in games.

5.3 Optimal Fair Allocation When No Adja-
cent Budget Constrained Advertisers

When there are multiple budget constrained advertisers,
a natural local algorithm is to cycle over the different ad-
vertisers until convergence, running Algorithm Offline-OT-
Clicks-Single-Advertiser for each advertiser a. In the re-
mainder of this section we analyze this algorithm, which is
defined in Figure 5.

In a GSP auction, there are two ways in which the intro-
duction or removal of an impression i of one budget con-
strained advertiser can effect an impression i′ of another:

• i can change the cpc of i′

• i can change the position of i′, and hence the expected
spend from i′.

Due to this interaction, it is unclear whether Algorithm
Offline-OT-Clicks always yields an optimal fair allocation.
However we will show that it does converge to a optimal fair
allocation when there are no adjacent budget constrained
bidders, i.e., in the auction ranking of all eligible bidders,
there are no consecutive budget constrained bidders. The
key property is that in such a scenario, the cpc of a budget
constrained impression is independent of other budget con-
strained impressions (even though the position may change

1. Begin with an allocation with only budget uncon-
strained advertisers.

2. For each budget constrained advertiser a ∈ A (in
turn):
–Run Offline-OT-Clicks-Single-Advertiser for a.
–Update I.

3. If the allocation has not converged, go to step 2.

Figure 5: Algorithm Offline-OT-Clicks.

due to the insertion or removal of other budget constrained
impressions). As an aside, this key property also holds for
first price auctions, and the following results also hold for
first price auctions.

Given this property, for each advertiser a, the 1 / cpc or-
dering of the impressions in Ea is fixed throughout the al-
gorithm, independent of the allocations of the other adver-
tisers. From the definition, it is easy to see that every fair
allocation has the property that for each a ∈ A, Ia is a prefix
of this fixed ordering of Ea, since a non-prefix would violate
Property (b) in Definition 2. By definition of the algorithm,
this is true also for the allocations produced during every
step of the algorithm. We call allocations with this property
prefix-allocations.

Lemma 2. Algorithm Offline-OT-Clicks converges to a
fair allocation if there are no adjacent constrained bidders
in any query.

Proof. Fix an advertiser a, and consider the allocation
to a in each round. We claim that the prefix chosen for
a only increases in length in subsequent rounds. Since for
each advertiser the prefix cannot increase indefinitely, this
means that the algorithm converges to some allocation, say
I∗. Property (a) in Definition 2 holds for I∗ because of the
termination condition of Offline-OT-Clicks. Property (b)
holds by definition of Offline-OT-Clicks-Single-Advertiser,
which is run in every round of Offline-OT-Clicks.

It remains to prove the claim that the prefix for a can only
increase in each round. Suppose this is true up to the time
we process advertiser a in round k. In between the times
we process a in rounds k and k+ 1, the algorithm may have
introduced impressions of other advertisers in the auctions
for which we show a’s impressions in round k. The only
effect this can have on a’s impression is to possibly lower
its position, and therefore of its expected spend. Thus, in
round k+ 1, the algorithm may need to pick a longer prefix
to finish a’s budget.

For two prefix-allocations I, J , we say I ≺ J if for every
advertiser a ∈ A, the prefix length in I is at most the prefix
length in J , and therefore Ia ⊆ Ja.

Lemma 3. Let I∗ be the fair allocation that Algorithm
Offline-OT-Clicks converges to (when there are no adja-
cent constrained bidders). Then

I∗ ≺ I, for all fair allocations I

Proof. If this is not true for some fair allocation I, then
consider the first time during the run of the algorithm that

some advertiser a’s prefix becomes longer than its prefix
in I. Comparing to I, the algorithm’s current allocation
has all advertisers a′ 6= a with smaller or equal prefixes.
Thus the position normalizers of a’s impressions are larger
or equal during this step of the algorithm than in the al-
location I. This implies that the prefix of a in the current
allocation should be shorter or equal than that in I, since
the expected spend in each auction is at least that in I, a
contradiction.

Note that Lemma 3 implies that there is a unique ≺-minimal
fair allocation, and that the algorithm converges to it.

Theorem 4. Algorithm Offline-OT-Clicks converges to
an optimal fair allocation if there are no adjacent constrained
bidders in any query.

Proof. From Lemma 2 we know that the algorithm con-
verges to a fair allocation I∗. From Lemma 3 we get that
for every advertiser a, and every fair allocation I, a’s pre-
fix in I∗ is no longer than its prefix in I. Thus a spends
the same amount of money (in expectation) in I∗ as in I,
but spends it on a subset (I∗)a ⊆ Ia such that impressions
in Ia\(I∗)a have lower (or equal) ratios of value of click to
cost of click, as impressions in (I∗)a. This implies that a
gets at least as much total expected value in I∗ as in I, in
turn implying that I∗ maximizes any weighted average (over
advertisers) of the total expected value obtained, among all
fair allocations.

As mentioned earlier, it is easy to prove similar statements
about other linear objectives such as optimizing profit and
optimizing conversions.

6. EMPIRICAL EVALUATION
We report two types of experiments below, offline simu-

lations to compare different optimized allocation solutions,
and live experiments on Google traffic. We start with a
description of prior approaches: LP and BidScaling.

6.1 LP and BidScaling

6.1.1 Linear Programming
Assuming complete knowledge of the data, a theoretical

benchmark for any budget allocation algorithm can be ob-
tained via linear programming [5]. For any query q, let s
denote the set of bidders chosen to participate in the auction
by an allocation mechanism. Let C(q) be the collection of all
such sets, generated by any conceivable algorithm. Clearly,
we can completely specify an allocation policy by specifying
for each query q, the set s ∈ C(q) of bidders permitted by
the algorithm to participate in the auction for q.

We can then attempt to discover the best allocation policy
(for a given linear objective, say click maximization) using
linear programming. Let Nq be the number of times query q
appears in the data and xqs be the number of times the set
s of bidders is selected for query q. For a bidder i ∈ s, let
cpcqsi and ctrqsi be the cost-per-click and click-through rate
for i in the auction for q. Let αsi be the position normalizer
for impression i. Let Bi be the budget of bidder i. Then,
we can discover the best allocation policy that maximizes
total clicks provided to budget constrained advertisers as
the solution of the following linear program:

max
∑
q,s,i

αsictrqsixqs

Allocation constraint:
∑
s

xqs ≤ Nq ∀q

Budget constraint:
∑
q,s

cpcqsiαsictrqsixqs ≤ Bi ∀i

One can optimize for other linear metrics, such as rev-
enue by suitably changing the objective function. It is not
possible to directly optimize for non-linear metrics such as
CTR.

The advantage of LP (compared to our approach) is that
the LP fully incorporates interactions between different bud-
get constrained advertisers. However, even the most efficient
LP solvers cannot solve linear programs on the volume of
data a search engine sees in a day. Thus we have to limit
LP to the head portion of query traffic, and use an approach
such as Vanilla Probabilistic Throttling on the long tail.

6.1.2 Bid Scaling
Both the OT algorithms and the LP formulation work un-

der the constraint that the bidder’s inputs (bids) can not be
changed by the search engine, but they can only be throt-
tled. Bid Scaling algorithms go outside this design space by
lowering the bids of the constrained bidders appropriately.
As we discussed in Section 1, bid scaling is not an option for
our problem. Nevertheless, it is interesting to compare our
approach against bid scaling.

Our bid scaling algorithm finds one bid multiplier per bid-
der and applies it to all the advertiser’s bids, similar to the
Budget Optimizer product in Google Adwords [1]. The mul-
tiplier is calculated so as to spend exactly the bidder’s bud-
get.

6.2 Simulation Methodology
We conducted simulations using a 20% sample of all US

queries made over a week to the Google search engine. We
sorted queries by the total impressions for that query (summed
over all query instances), and picked the queries with the
most impressions as the “head” queries for the LP. The num-
ber of queries in the head was chosen so that the LP could
run in memory. (Note that as we move from the head to the
tail, each query has relatively few instances. So even dou-
bling the memory will not substantially increase the fraction
of revenue or clicks covered by the “head” queries.) For each
set (head and tail), we computed an appropriate budget for
that set by scaling down the total budgets. For each query
we also have the candidate ads together with the relevant
metrics, namely, the bid and the predicted CTR. Our sim-
ulation is offline, i.e., the set of queries and candidates is
fixed. Since all the algorithms we simulate are time inde-
pendent (as opposed to some of the bid scaling algorithms
studied earlier, e.g., [22, 9, 13, 16, 15]), we do not need to
worry about the time-arrival order of the queries.

We simulated the following throttling algorithms for our
first set of comparisons:

1. VPT: Vanilla Probabilistic Throttling.

2. OT-Clicks: Optimized Throttling, objective is clicks
(or inverse of cpc).

3. OT-CTR: Optimized Throttling, objective is CTR.

4. BidScaling, as described in Section 6.1.2

5. LP-Clicks: Click maximizing Linear Program on head
queries.

6.3 Results
We show the changes in various objectives relative to the

baseline of Vanilla Probabilistic Throttling (VPT). It is im-
portant to note that while we expect the overall conclusions
to carry over to an online setting where the query distribu-
tion changes over time, the exact numbers will change. In
general, the gains from optimized budget allocation or bid
scaling will be significantly lower in live experiments due to
changes in query traffic. For this reason, as well as data
confidentiality, we omit the scale from our graphs below.

6.3.1 Comparison with LP
Figure 6 shows the change in clicks per dollar for budget

constrained advertisers for each of the algorithms. The first
set of numbers, “head”, show the results when we artificially
restrict all the algorithms to operate over the same set of
head queries as LP-Clicks, with VPT on the tail. Since
LP-Clicks is not just optimal, but can also generate solu-
tions that are not fair (unlike the other algorithms), it is not
surprising that LP-Clicks outperforms the alternatives.

However, when we allow the algorithms to optimize over
the entire dataset – the “all” numbers – the algorithms that
can use the full data dramatically outperform LP-Clicks.
In fact, even OT-CTR, which is optimizing CTR and not
CPC, yields a higher drop in CPC (or equivalently, more
clicks per dollar) than LP-Clicks. The reason for the poor
performance of LP-Clicks is that the LP can be run only
on the head, and even though the head queries account for
a substantial portion of revenue, they are relatively homo-
geneous – the potential gains from optimization are more
in the tail than the head. We found that this held for the
other metrics as well, i.e., the substantial majority of the
gains from optimization came from the tail queries.3

6.3.2 Comparison with BidScaling
The other interesting comparison in Figure 6 is between

OT-Clicks and BidScaling. BidScaling performs slightly
better than OT-Clicks when restricted to head queries, as
many advertisers may appear for a relatively small number
of queries in the head. Thus OT-Clicks, which doesn’t have
the flexibility to scale bids, has a bit less room to maneu-
ver. Over all queries, OT-Clicks has much more scope to
differentiate between queries, and hence does slightly better
than BidScaling.

However, OT-Clicks may be getting the gains by drop-
ping high bid, high cpc clicks which might still yield more
profit for the advertiser than low bid, low cpc clicks. Figure 7
shows how the algorithms do on estimated profit-per-dollar:
the sum of the bids minus the total cost, divided by the to-
tal cost, over all budget constrained campaigns. (From this

3An implementation of LP that used more resources could
narrow the gap by increasing the fraction of queries covered
by the “head”. However, as the number of distinct queries
increases rapidly for each fraction of additional coverage,
every doubling of resources will only yield incremental gains.

Figure 6: Impact on clicks-per-dollar, over budget
constrained campaigns. The baseline is VPT.

point, all figures represent performance using all queries,
not just the head.) Here OT-Clicks does much worse than
BidScaling, though it is still positive. In fact, even OT-
CTR beats OT-Clicks. OT-Profit, which attempts to
optimize profit, yields similar results to BidScaling.

As discussed in the introduction, user experience (qual-
ity of ads) is as important as advertiser ROI for long-term
success. At first glance, one might expect that optimizing
clicks per dollar would yield similar results to optimizing
CTR: doesn’t a higher click-through rate mean more clicks?
However, what matters for optimizing clicks per dollar (with
a fixed budget) is the cost per click, not the click-through
rate.

Figure 8 shows the change in CTR for each of the al-
gorithms. OT-CTR dramatically outperforms all other al-
gorithms, not surprising since it is the only algorithm ex-
plicitly trying to optimize quality. Interestingly, while both
OT-Profit and BidScaling gave similar gains in profit-
per-dollar, their effect on quality is quite different: OT-
Profit improves CTR, while BidScaling reduces CTR.

6.3.3 Multiple Objectives
We now present results with metrics that blend the CTR

and profit objectives. In Section 4 we had conjectured that
blended metrics might yield better results than individual
metrics, since different advertisers may have better scope
for optimization along different dimensions. Figures 9 and
10 show the impact of two blended metrics: ctr(bidi −
cpci)/cpc, and ctr2(bidi − cpci)/cpc. Notice that OT-
CTR-Profit, which uses the former as the metric, almost
matches OT-Profit on profit-per-dollar, while yielding sig-
nificantly higher gains in CTR than OT-Profit. OT-CTR2-
Profit further increases CTR gains, for a bit more drop in
profit-per-dollar. In addition to validating our conjecture
that blended metrics may yield better results, such blended
metrics let the search engine pick any arbitrary point in a
curve that trades gains in user quality for gains in advertiser
value.

6.3.4 Summary
For optimizing clicks-per-dollar, OT-Clicks dramatically

outperformed LP-Clicks by using all the data. For op-
timizing profit-per-dollar, OT-Profit matched BidScal-

Figure 7: Impact on profit-per-dollar, over budget
constrained campaigns. The baseline is VPT.

Figure 8: Impact on CTR (including all campaigns).
The baseline is VPT.

ing on profit-per-dollar, while yielding better CTR (quality
for users). If the primary goal was quality, OT-CTR blew
away the other algorithms, while still improving advertiser
profit-per-dollar and clicks-per-dollar. Finally, blending mul-
tiple metrics can yield better results than a single metric,
since different advertisers have more scope for optimization
along different metrics.

One might wonder whether implementation of such tech-
niques would incentivize budget unconstrained advertisers
to lower their budgets and become budget constrained. The
answer is negative: BidScaling did slightly better than
OT-Profit from an advertiser’s perspective (ignoring qual-
ity for users), and BidScaling only used the information
available to the search engine, not the additional informa-
tion available to the advertiser. With additional information
about conversion rates for each keyword, or the true value
of each click (rather than using the bid as the proxy for
value), the advertiser easily get better ROI by optimizing
their campaign (versus becoming budget constrained).

6.4 Live Traffic Experiments
We implemented our algorithms in Google’s production

ad serving system, and ran experiments on live traffic, with
both OT-CTR and BidScaling. The results were consis-
tent with our simulations, though the magnitude of the gains

Figure 9: Multiple objectives: impact on Profit-per-
dollar. The baseline is VPT.

Figure 10: Multiple objectives: impact on CTR. The
baseline is VPT.

was significantly less than in the simulations, since we have
complete knowledge of future queries in the simulations, un-
like the partial predictability of live traffic.

For OT-CTR, the experiments showed statistically signif-
icant improvements in quality for users, clicks, and conver-
sions, while revenue was neutral – a Pareto improvement to
all objectives. Gains in conversions per dollar were signifi-
cantly higher than the gains in clicks per dollar, since CTR
is correlated with conversion rate. Thus by shifting spend
to ads with higher CTR, we also increased the number of
conversions.

7. CONCLUSION
We studied the problem of allocating budget constrained

spend in order to maximize objectives such as quality for
users, or ROI for advertisers. We introduced the concept of
fair allocations (analogous to Nash equilibriums), and con-
strained the space of algorithms to those that yielded fair
allocations. We were also constrained (in our setting) to not
modify bids. We proposed a family of Optimized Throttling
algorithms that work within these constraints, and can be
used to optimize different objectives. In fact, they can be
tuned to pick an arbitrary point in the tradeoff curve be-
tween multiple objectives.

Prior approaches such linear programming and bid scaling

are not applicable in our setting: linear programming yields
unfair allocations, and bid scaling changes bids. It was nev-
ertheless interesting to study how much of a penalty (if any)
our algorithms pay for working within these constraints (fair
allocations, fixed bids). We found that, surprisingly, our al-
gorithms dramatically outperform linear programming – by
being fast enough to use all the data rather than being lim-
ited to head queries. Our algorithms are also competitive
with bid scaling on advertiser metrics, while yielding better
ad quality for users.

The Optimized Throttling algorithms are designed for im-
plementation in a high throughput production system. The
computation overhead at serving time is negligible: just a
few comparisons. The algorithms also have a minimal mem-
ory footprint, as little as 8 bytes (plus hash table overhead)
per advertiser. Finally, they are robust with respect to errors
in estimating future traffic, since they only need the total
volume of traffic and the distribution of the chosen metric,
not the number of occurrences of each query. We validated
our system design by implementing our algorithms in the
Google ads serving system, and running experiments on live
traffic. The experiments showed significant improvements in
both advertiser ROI (conversions per dollar) and user expe-
rience.

Acknowledgments: We thank Anshul Kothari for his con-
tributions to the algorithms and system design.

8. REFERENCES
[1] Google automatic bidding product.

http://adwords.google.com/support/aw/bin/

answer.py?hl=en&answer=113234.

[2] Google conversion optimizer product. http:
//www.google.com/adwords/conversionoptimizer/.

[3] Protocol buffers. Website, 2008.
http://code.google.com/p/protobuf.

[4] Z. Abrams. Revenue maximization when bidders have
budgets. In SODA, 2006.

[5] Z. Abrams, S. Keerthi, O. Mendelevitch, and
J. Tomlin. Ad delivery with budgeted advertisers: a
comprehensive lp approach. J. Electronic Commerce
Research, 9(1), 2008.

[6] G. Aggarwal, A. Goel, and R. Motwani. Truthful
auctions for pricing search keywords. In EC, 2006.

[7] C. Borgs, J. Chayes, N. Immorlica, K. Jain,
O. Etesami, and M. Mahdian. Dynamics of bid
optimization in online advertisement auctions. In
Proc. of the 16th international conference on World
Wide Web, pages 531–540. ACM, 2007.

[8] C. Borgs, J. Chayes, N. Immorlica, M. Mahdian, and
A. Saberi. Multi-unit auctions with
budget-constrained bidders. In EC, pages 44–51, 2005.

[9] N. Buchbinder, K. Jain, and J. Naor. Online
Primal-Dual Algorithms for Maximizing Ad-Auctions
Revenue. In ESA, 2007.

[10] M. Cary, A. Das, B. Edelman, I. Giotis, K. Heimerl,
A. Karlin, C. Mathieu, and M. Schwarz. Greedy
bidding strategies for keyword auctions. In Proc. of
the 8th ACM conference on Electronic commerce,
pages 262–271. ACM New York, NY, USA, 2007.

[11] D. X. Charles, M. Chickering, N. R. Devanur, K. Jain,
and M. Sanghi. Fast algorithms for finding matchings
in lopsided bipartite graphs with applications to
display ads. In ACM Conference on Electronic
Commerce, pages 121–128, 2010.

[12] Y. Chen, P. Berkhin, B. Anderson, and N. Devanur.
Real-time bidding algorithms for performance-based
display ad allocation. In KDD, pages 1307–1315.
ACM, 2011.

[13] N. R. Devanur and T. P. Hayes. The adwords problem:
online keyword matching with budgeted bidders under
random permutations. In ACM Conference on
Electronic Commerce, pages 71–78, 2009.

[14] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet
Advertising and the Generalized Second-Price
Auction. American Economic Review, 97(1):242–259,
2007.

[15] J. Feldman, M. Henzinger, N. Korula, V. S. Mirrokni,
and C. Stein. Online stochastic packing applied to
display ad allocation. In ESA (1), pages 182–194,
2010.

[16] J. Feldman, N. Korula, V. S. Mirrokni,
S. Muthukrishnan, and M. Pál. Online ad assignment
with free disposal. In WINE, pages 374–385, 2009.

[17] J. Feldman, S. Muthukrishnan, M. Pal, and C. Stein.
Budget optimization in search-based advertising
auctions. In EC, 2007.

[18] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google File System. In 19th ACM Symposium on
Operating Systems Principles, 2003.

[19] G. Goel and A. Mehta. Online budgeted matching in
random input models with applications to Adwords.
In SODA, 2008.

[20] K. Hosanagar and V. Cherepanov. Optimal bidding in
stochastic budget constrained slot auctions. In EC,
2008.

[21] M. Mahdian, H. Nazerzadeh, and A. Saberi.
Allocating online advertisement space with unreliable
estimates. In EC, 2007.

[22] A. Mehta, A. Saberi, U. V. Vazirani, and V. V.
Vazirani. Adwords and generalized online matching. J.
ACM, 54(5), 2007.

[23] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the data: Parallel analysis with sawzall.
Scientific Programming Journal, 13:277–298, 2005.

[24] P. Rusmevichientong and D. Williamson. An adaptive
algorithm for selecting profitable keywords for
search-based advertising services. In EC, 2006.

[25] H. Varian. Position auctions. International Journal of
Industrial Organization, 25(6):1163–1178, 2007.

[26] E. Vee, S. Vassilvitskii, and J. Shanmugasundaram.
Optimal online assignment with forecasts. In ACM
Conference on Electronic Commerce, pages 109–118,
2010.

