Sequential Patterns, Trends and Privacy

Ramakrishnan Srikant

IBM Almaden Research Center www.almaden.ibm.com/cs/people/srikant/

R. Srikant

Talk Overview

- Sequential Patterns & Trends
- Privacy Preserving Data Mining
- The Research Challenge

Sequential Patterns

- Given:
 - a set of data-sequences
 - data-sequence : list of transactions
 - transaction : set of items + transaction-time
- Example: 10% of customers bought "Foundation" and "Ringworld" in one transaction, followed by "Ringworld Engineers" in another transaction.
 - 10% is called the *support* of the pattern
- Find all sequential patterns supported by more than a user-specified percentage of data-sequences.
- R. Agrawal and R. Srikant, "Mining Sequential Patterns", ICDE '95.

Sequential Patterns Rules

- \langle (F, R) (RE) \Rightarrow (RT) \rangle with 3% support and 40% confidence.
 - Confidence: 40% of occurrences of ((F, R) (RE)) are followed by (RT).
- Problem Decomposition:
 - Find all sequential patterns with minimum support.
 - Use the sequential patterns to generate rules.

Applications

- Attached mailing, e.g., customized mailings for a book club.
- Customer satisfaction/retention
- Web log analysis
- Medical research

Generalizations

- Time Constraints:
 - Don't care if someone bought "Ringworld Engineers" 3 years after buying "Ringworld".
 - Maximum/minimum time-gap between adjacent elements.
- Flexible definition of transaction:
 - Allow all items bought within a user-specified time interval to be considered a "transaction".
 - Sliding window transactions.

Generalizations (cont.)

• Taxonomies:

- find patterns between items at any level of the taxonomy
- a data sequence "Foundation", followed by "Ringworld" 'would support the sequential patterns "Foundation", followed by "Ringworld", "Foundation", followed by "Niven", "Asimov", followed by "Niven", etc.
- R. Srikant and R. Agrawal, "Sequential Patterns, Generalizations & Performance Improvements", EDBT '96.

GSP Algorithm: Overview

- L_k : Set of frequent sequences of size k (those with minimum support).
- C_k : Set of candidate sequences of size k (potentially frequent sequences)

 $\begin{array}{l} L_1 = \{ \text{frequent items} \}; \\ \text{for (} k = 1; \ L_k \neq \emptyset; \ k++ \) \ \text{do} \\ \text{begin} \\ C_{k+1} = \text{New candidates generated from } L_k; \\ \text{foreach data-sequence } s \ \text{in the database } \text{do} \\ \text{Increment the count of all candidates in } C_{k+1} \ \text{that} \\ are \ \text{supported by } s. \\ L_{k+1} = \text{Candidates in } C_{k+1} \ \text{with minimum support.} \\ \text{end} \end{array}$

Answer = $\bigcup_k L_k$;

Candidate Generation

Given a sequence $s = \langle s_1 s_2 ... s_n \rangle$ and a subsequence $c = \langle c_1 c_2 ... c_m \rangle$, c is a *contiguous* subsequence of s if there exists an integer k such that $c_i \subseteq s_{i+k}, 1 \leq i \leq m$.

Example: Let $s = \langle (1, 2) (3, 4) (5) (6) \rangle$. Contiguous subsequence: $\langle (3) (5) \rangle$. Non-contiguous: $\langle (3, 4) (6) \rangle$

Lemma: If a data-sequence d supports a sequence s, d will also support any contiguous subsequence of s. If there is no max-gap constraint, d will support any subsequences of s.

```
d: \langle (11) (1 \ 2 \ 15) (17) (3) (4 \ 12) \rangle
s: \langle (1 \ 2) (3) (4) \rangle
c: \langle (2) (3) \rangle
What about \langle (2) (4) \rangle?
```

All *contiguous* subsequences of a frequent subsequence are frequent.

Candidate Generation (cont.)

Join Phase:

 s_1 ': result of dropping the first item of s_1 s_2 ': result of dropping the last item of s_2

Join condition: s_1 joins with s_2 if $s'_1 = s'_2$ Result: s_1 extended with the last item in s_2

Prune Phase: Drop all sequences that have a non-frequent contiguous subsequence.

 $\langle (1,2) (3) (5) \rangle$ is dropped since $\langle (1) (3) (5) \rangle$ is not in L_3 .

Counting Support

Given

- $\bullet\,$ a data-sequence T and
- a set of candidates C_k ,

find all members of C_k which are supported by T. $C_2 : \{ \langle (1 \ 2) \rangle, \langle (1) \ (3) \rangle, \langle (3 \ 4) \rangle, \langle (5) \ (6) \rangle \}$ $T : \langle (3 \ 4) \ (6) \rangle$

- Only check candidates in buckets corresponding to 3, 4, and 6.
- \bullet avg. number of items in data-sequence \ll total number of items
- generalized into a *hash-tree*

R. Srikant

Counting Support (cont.)

If we reach a node by hashing on an item x whose transaction-time is t, only check items in the data-sequence whose time is in $[t - \text{window-size}, t + \max(\text{window-size}, \max-\text{gap})]$

Discovering Trends in Text Databases

- Identify frequent phrases using sequential patterns.
 - Sequential patterns allow considerable latitude in definition of "phrase".
- Generate histories of phrases.
 - Partition data by time period, e.g., years.
 - Find support in each time period.
- Identify phrases that satisfy a specified trend.
 - SDL Query language (Agrawal et al., VLDB '95)
 - GUI to generate queries.
- B. Lent, R. Agrawal and R. Srikant, "Discovering Trends in Text Databases", KDD '97.

Upward Trends in Patent Data

Talk Overview

- Sequential Patterns & Trends
- Privacy Preserving Data Mining
- The Research Challenge

Growing Concern for Privacy of Digital Information

- Popular Press:
 - Economist: The End of Privacy (May 99)
 - Time: How to Protect Your Privacy Online (July 2001)
- Govt directives/commissions:
 - European directive on privacy protection (Oct 98)
 - Information and privacy commissioner, Ontario (Jan 98)
- Special issue on internet privacy, CACM, Feb 99
- S. Garfinkel, "Database Nation: The Death of Privacy in 21st Century", O' Reilly, Jan 2000

Privacy Surveys

- [CRA99b] survey of web users:
 - 17% privacy fundamentalists
 - 56% pragmatic majority
 - 27% marginally concerned
- [Wes99] survey of web users:
 - 82% : privacy policy matters
 - 14% don't care
- Not equally protective of every field
 - may not divulge at all certain fields;
 - may not mind giving true values of certain fields;
 - may be willing to give not true values but modified values of certain fields.

Technical Question

- The primary task in data mining: development of models about aggregated data.
- Can we develop accurate models without access to precise information in individual data records?
- R. Agrawal and R. Srikant, "Privacy Preserving Data Mining", SIGMOD 2000.

Talk Overview

- Sequential Patterns & Trends
- Privacy Preserving Data Mining
 - Randomization protects information at the individual level.
 - Algorithm to reconstruct the distribution of values.
 - Use reconstructed distributions in data mining algorithms, e.g. to build decision-tree classifier.
 - How well does it work?
- The Research Challenge

Using Randomization to protect Privacy

- Return $x_i + r$ instead of x_i , where r is a random value drawn from a distribution.
 - Uniform
 - Gaussian
- Fixed perturbation not possible to improve estimates by repeating queries.
- Algorithm knows parameters of r's distribution.

Reconstruction Problem

- Original values x_1, x_2, \ldots, x_n
 - realizations of iid random variables X_1, X_2, \ldots, X_n ,
 - each with the same distribution as random variable X.
- To hide these values, we use y_1, y_2, \ldots, y_n
 - realizations of iid random variables Y_1, Y_2, \ldots, Y_n ,
 - each with the same distribution as random variable Y.

Given

- $x_1 + y_1, x_2 + y_2, \dots, x_n + y_n$
- the density function f_Y for Y,

estimate the density function f_X for X.

Using Bayes' Rule

• Assume we know both f_X and f_Y .

• Let
$$w_i \equiv x_i + y_i$$
.

$$f_{X_{1}}(a \mid X_{1} + Y_{1} = w_{1})$$

$$= \frac{f_{X_{1}+Y_{1}}(w_{1} \mid X_{1} = a) f_{X_{1}}(a)}{f_{X_{1}+Y_{1}}(w_{1})}$$
(using Bayes' rule for density functions)
$$= \frac{f_{X_{1}+Y_{1}}(w_{1} \mid X_{1} = a) f_{X_{1}}(a)}{\int_{-\infty}^{\infty} f_{X_{1}+Y_{1}}(w_{1} \mid X_{1} = z) f_{X_{1}}(z) dz}$$

$$= \frac{f_{Y_{1}}(w_{1}-a) f_{X_{1}}(a)}{\int_{-\infty}^{\infty} f_{Y_{1}}(w_{1}-z) f_{X_{1}}(z) dz} \quad (Y_{1} \text{ independent of } X_{1})$$

$$= \frac{f_{Y}(w_{1}-a) f_{X}(a)}{\int_{-\infty}^{\infty} f_{Y}(w_{1}-z) f_{X}(z) dz} \quad (f_{X_{1}} \equiv f_{X}, f_{Y_{1}} \equiv f_{Y})$$

$$f'_X(a) \approx \frac{1}{n} \sum_{i=1}^n f_{X_i}(a \mid X_i + Y_i = w_i)$$

= $\frac{1}{n} \sum_{i=1}^n \frac{f_Y(w_i - a) f_X(a)}{\int_{-\infty}^\infty f_Y(w_i - z) f_X(z) dz}$

R. Srikant

Reconstruction Method: Algorithm

 $\begin{array}{l} f_X^0 := \text{Uniform distribution} \\ j := 0 \; / / \; \text{Iteration number} \\ \text{repeat} \\ & \text{Use equation to compute a new estimate } f_X^{j+1}. \\ j := j+1 \\ \text{until (stopping criterion met)} \end{array}$

Stopping Criterion: Stop when difference between successive estimates of the original distribution becomes very small (1% of the threshold of the χ^2 test).

Using Partitioning to Speed Computation

- distance(z, w_i) \approx distance between the mid-points of the intervals in which they lie, and
- density function $f_X(a) \approx$ the average of the density function over the interval in which a lies.

$$f'_X(a) = \frac{1}{n} \sum_{i=1}^n \frac{f_Y(w_i - a) f_X(a)}{\int_{-\infty}^\infty f_Y(w_i - z) f_X(z) dz}$$

becomes

$$\Pr'(X \in I_p) = \frac{1}{n} \sum_{s=1}^k N(I_s) \times \frac{f_Y(m(I_s) - m(I_p)) \operatorname{Pr}(X \in I_p)}{\sum_{t=1}^k f_Y(m(I_s) - m(I_t)) \operatorname{Pr}(X \in I_t)}$$

• Can be computed in $O(k^2)$ time, where k is the number of intervals.

R. Srikant

Maximum Likelihood Estimate

- The above algorithm (minus the interval approximation) converges to the maximum likelihood estimate.
 - D. Agrawal and C.C. Aggarwal, "On the Design and Quantification of Privacy Preserving Data Mining Algorithms", PODS 2001.

How well does this work?

• Uniform random variable [-0.5, 0.5]

R. Srikant

Talk Overview

- Sequential Patterns & Trends
- Privacy Preserving Data Mining
 - Randomization protects information at the individual level.
 - Algorithm to reconstruct the distribution of values.
 - Use reconstructed distributions to build decisiontree classifier.
 - How well does it work?
- The Research Challenge

Algorithms

Global:

- Reconstruct for each attribute once at the beginning.
- Induce decision tree using reconstructed data.

ByClass:

- For each attribute, first split by class, then reconstruct separately for each class.
- Induce decision tree using reconstructed data.

Local:

- As in ByClass, split by class and reconstruct separately for each class.
- However, reconstruct at each node (not just once).

Methodology

- Compare accuracy of Global, ByClass and Local against
 - Original: unperturbed data without randomization.
 - Randomized: perturbed data but without making any corrections for randomization.
- Synthetic data generator from [AGI+92].
- Training set of 100,000 records, split equally between the two classes.

Quantifying Privacy

If it can be estimated with c% confidence that a value x lies in the interval $[x_1, x_2]$, then the interval width $(x_2 - x_1)$ defines the amount of privacy at c% confidence level.

- Example: Randomization Level for Age[10,90]
 - Given a perturbed value 40
 - 95% confidence that true value lies in [30,50]
 - Interval Width : 20 Range : 80 \Rightarrow 25% randomization level
- Uniform: between $[-\alpha, +\alpha]$
- Gaussian: mean $\mu=0$ and standard deviation σ

	Confidence		
	50%	95%	99.9%
Uniform	$0.5 \times 2\alpha$	$0.95 \times 2\alpha$	$0.999 \times 2\alpha$
Gaussian	$1.34 \times \sigma$	$3.92 \times \sigma$	$6.8 imes \sigma$

Synthetic Data Functions

• Class A if function is true, Class B otherwise.

F1 (age
$$< 40$$
) \lor ((60 \le age)

 $\begin{array}{ll} \textbf{F2} & ((\texttt{age} < 40) \ \land \ (50K \leq \texttt{salary} \leq 100K)) \lor \\ & ((40 \leq \texttt{age} < 60) \ \land \ (75K \leq \texttt{salary} \geq 125K)) \lor \\ & ((\texttt{age} \geq 60) \ \land \ (25K \leq \texttt{salary} \leq 75K)) \end{array}$

$$\begin{array}{lll} \textbf{F3} & ((\texttt{age} < 40) \land & \\ & (((\texttt{elevel} \in [0..1]) \land (25K \leq \texttt{salary} \leq 75K)) \lor \\ & ((\texttt{elevel} \in [2..3]) \land (50K \leq \texttt{salary} \leq 100K)))) \lor \\ & ((40 \leq \texttt{age} < 60) \land & \\ & (((\texttt{elevel} \in [1..3]) \land (50K \leq \texttt{salary} \leq 100K)) \lor \\ & (((\texttt{elevel} = 4)) \land (75K \leq \texttt{salary} \leq 125K))))) \lor \\ & ((\texttt{age} \geq 60) \land & \\ & (((\texttt{elevel} \in [2..4]) \land (50K \leq \texttt{salary} \leq 100K)) \lor \\ & ((\texttt{elevel} = 1)) \land (25K \leq \texttt{salary} \leq 75K)))) \end{array}$$

F4 $(0.67 \times (\text{salary} + \text{commission}) - 0.2 \times \text{loan} - 10K) > 0$

F5 $(0.67 \times (\text{salary} + \text{commission}) - 0.2 \times \text{loan} + 0.2 \times \text{equity} - 10K) > 0$ where equity = $0.1 \times \text{hvalue} \times \max(\text{hyears} - 20, 0)$

R. Srikant

Classification Accuracy

Change in Accuracy with Privacy

R. Srikant

Potential Privacy Breaches

- Distribution is a spike.
 - Example: Everyone is of age 40.
- Some randomized values are only possible from a given range.
 - Example: Add U[-50,+50] to age and get $125 \Rightarrow$ True age is ≥ 75 .
 - Not an issue with Gaussian.

Potential Privacy Breaches (cont.)

- Most randomized values in a given interval come from a given interval.
 - Example: 60% of the people whose randomized value is in [120,130] have their true age in [70,80].
 - Implication: Higher levels of randomization will be required.
- Correlations can make previous effect worse.
 - Example: 80% of the people whose randomized value of age is in [120,130] and whose randomized value of income is [...] have their true age in [70,80].
- Given a dataset, we can search for privacy breaches.
 - But how do we do it in advance?

Cryptographic Approach

- Y. Lindell and B. Pinkas, "Privacy Preserving Data Mining", *Crypto 2000*, August 2000.
- Problem: Two parties owning confidential databases wish to build a decision-tree classifier on the union of their databases, without revealing any unnecessary information.
- Malicious adversary: can alter its input, e.g., define input to be the empty database.
- Semi-honest (or passive) adversary: Correctly follows the protocol specification, yet attempts to learn additional information by analyzing the messages.

Private Distributed ID3

- Key problem: find attribute with highest information gain.
- We can then split on this attribute and recurse.
- Information Gain: Need to compute

$$-\sum_{j}\sum_{i}|T(a_{j},c_{i})|\log|T(a_{j},c_{i})|$$

- $-\sum_j |T(a_j)| \log |T(a_j)|.$
- $T(c_i, a_j)$ = set of records in class c_i with attribute $A = a_j$.
- Given v_1 known to party 1 and v_2 known to party 2, compute $(v_1 + v_2) \log(v_1 + v_2)$ and output random shares.
- Given random shares for each attribute, use Yao's protocol to compute information gain.

Cryptographic Approach (Summary)

- Solves different problem (vs. randomization)
- Efficient with semi-honest adversary and small number of parties.
- Gives (almost) the same solution as the non-privacypreserving computation (unlike randomization).
- Will not scale to individual user data.

Talk Overview

- Sequential Patterns & Trends
- Privacy Preserving Data Mining
- The Research Challenge

Randomizing Time Values

- Similar to randomizing age or salary.
- But what if we want to find trends at different levels of granularity?
 - People who visit the website on a Saturday ...
 - People who visit the website in March ...

Randomizing a Boolean Attribute

- Warner, "Randomized response: A survey technique for eliminating evasive answer bias", J. Am. Stat. Assoc. 1965.
- Boolean variables, e.g., "drug addiction = yes/no".
- Keep the value with probability p, and flip it with probability 1 p.
- Let f_y be fraction of records with true "yes", f'_y fraction of records with "yes" after randomization:

$$f'_y = f_y p + (1 - f_y)(1 - p)$$

$$f_y = (f'_y - (1 - p))/(2p - 1)$$

Randomizing Transaction Data

- For each (unique) item in the transaction, keep item with probability p and replace item with a random item with probability 1 p.
- Can (probably) compute formulae for support and variance.

Privacy Breaches with Sequential Patterns

- Replace item with 80% probability.
- 10 million transactions, ((F, R) (RE)) has 1% support.
- Prob. of retaining pattern = $0.2^3 = 0.8\%$
- 805 occurrences of ((F, R) (RE)) in randomized data.
 - 800 of these were in the original data-sequence.
 - 5 of these were generated from replaced items.
- Estimate with 99% confidence that pattern was originally present!
- Ack: Alexandre Evfimievski

The Research Challenge

- Goal: Have your cake and mine it too!
 - Preserve privacy at the individual level, but still build accurate models.
- Can we discover sequential patterns and trends, while avoiding privacy breaches?

Related Work: Statistical Databases

- Statistical Databases : provide statistical information without compromising sensitive information about individuals (surveys: [AW89] [Sho82])
- Query Restriction
 - restrict the size of query result (e.g. [FEL72][DDS79])
 - control overlap among successive queries (e.g. [DJL79])
 - keep audit trail of all answered queries (e.g. [CO82])
 - suppress small data cells (e.g. [Cox80])
 - cluster entities into mutually exclusive atomic populations (e.g. [YC77])
- Data Perturbation
 - replace the original database by a sample from the same distribution (e.g. [LST83][LCL85][Rei84])
 - sample the result of a query (e.g. [Den80])
 - swap values between records (e.g. [Den82])
 - add noise to the query result (e.g. [Bec80])
 - add noise to the values (e.g. [TYW84][War65])

Related Work: Statistical Databases (cont.)

- Negative results: cannot give high quality statistics and simultaneously prevent partial disclosure of individual information [AW89]
- Negative results not directly applicable to privacypreserving data mining.
 - Also want to prevent disclosure of confidential information
 - But sufficient to reconstruct original distribution of data values, i.e. not interested in high quality point estimates