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Sequential Patterns

� Given:

{ a set of data-sequences

{ data-sequence : list of transactions

{ transaction : set of items + transaction-time

� Example: 10% of customers bought \Foundation"
and \Ringworld" in one transaction, followed by
\Ringworld Engineers" in another transaction.

{ 10% is called the support of the pattern

� Find all sequential patterns supported by more than
a user-speci�ed percentage of data-sequences.

� R. Agrawal and R. Srikant, \Mining Sequential
Patterns", ICDE '95.
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Sequential Patterns Rules

� h (F, R) (RE) ) (RT) i with 3% support and 40%
con�dence.

{ Con�dence: 40% of occurrences of h (F, R) (RE) i
are followed by (RT).

� Problem Decomposition:

{ Find all sequential patterns with minimum
support.

{ Use the sequential patterns to generate rules.
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Applications

� Attached mailing, e.g., customized mailings for a
book club.

� Customer satisfaction/retention

� Web log analysis

� Medical research
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Generalizations

� Time Constraints:

{ Don't care if someone bought \Ringworld
Engineers" 3 years after buying \Ringworld".

{ Maximum/minimum time-gap between adjacent
elements.

� Flexible de�nition of transaction:

{ Allow all items bought within a user-speci�ed
time interval to be considered a \transaction".

{ Sliding window transactions.
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Generalizations (cont.)

� Taxonomies:

and Empire
Foundation Ringworld

Niven

Engineers
Second

Foundation
Foundation Ringworld

Asimov

{ �nd patterns between items at any level of the
taxonomy

{ a data sequence ` \Foundation", followed by
\Ringworld" ' would support the sequential
patterns
\Foundation", followed by \Ringworld",
\Foundation", followed by \Niven",
\Asimov", followed by \Niven", etc.

� R. Srikant and R. Agrawal, \Sequential Patterns,
Generalizations & Performance Improvements",
EDBT '96.
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GSP Algorithm: Overview

� Lk : Set of frequent sequences of size k (those with
minimum support).

� Ck : Set of candidate sequences of size k
(potentially frequent sequences)

L1 = ffrequent itemsg;
for ( k = 1; Lk 6= ;; k++ ) do

begin

Ck+1 = New candidates generated from Lk;
foreach data-sequence s in the database do

Increment the count of all candidates in Ck+1 that
are supported by s.

Lk+1 = Candidates in Ck+1 with minimum support.
end

Answer =
S
k Lk;
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Candidate Generation

Given a sequence s = h s1s2:::sn i and a subsequence
c = h c1c2:::cm i, c is a contiguous subsequence of s if
there exists an integer k such that ci � si+k; 1 � i �
m.

Example: Let s = h (1, 2) (3, 4) (5) (6) i.
Contiguous subsequence: h (3) (5) i.
Non-contiguous: h (3, 4) (6) i

Lemma: If a data-sequence d supports a sequence s,
d will also support any contiguous subsequence of s.
If there is no max-gap constraint, d will support any
subsequences of s.

d: h (11) (1 2 15) (17) (3) (4 12) i

s: h (1 2) (3) (4) i

c: h (2) (3) i

What about h (2) (4) i ?

All contiguous subsequences of a frequent subsequence
are frequent.
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Candidate Generation (cont.)

Join Phase:

s1': result of dropping the �rst item of s1
s2': result of dropping the last item of s2

Join condition: s1 joins with s2 if s
0

1 = s02
Result: s1 extended with the last item in s2

L3 C4

h (1, 2) (3) i s1' = h (2) (3) i
h (1, 2) (4) i
h (1) (3, 4) i
h (2) (3, 4) i s2' = h (2) (3) i h (1, 2) (3, 4) i
h (2) (3) (5) i s2' = h (2) (3) i h (1, 2) (3) (5) i

Prune Phase: Drop all sequences that have a non-
frequent contiguous subsequence.

h (1,2) (3) (5) i is dropped since h (1) (3) (5) i is not
in L3.
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Counting Support

Given

� a data-sequence T and

� a set of candidates Ck,

�nd all members of Ck which are supported by T .

C2 : f h (1 2) i, h (1) (3) i, h (3 4) i, h (5) (6) i g
T : h (3 4) (6) i

2

< (5) (6) >

751 3 4 6

< (1 2) >
< (1) (3) >

< (3 4) >

� Only check candidates in buckets corresponding to
3, 4, and 6.

� avg. number of items in data-sequence � total
number of items

� generalized into a hash-tree
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Counting Support (cont.)

If we reach a node by hashing on an item x
whose transaction-time is t, only check items in the
data-sequence whose time is in [t�window-size; t+
max(window-size;max-gap)]

Time

max-gap

window-size

t
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Discovering Trends in Text Databases

� Identify frequent phrases using sequential patterns.

{ Sequential patterns allow considerable latitude in
de�nition of \phrase".

� Generate histories of phrases.

{ Partition data by time period, e.g., years.

{ Find support in each time period.

� Identify phrases that satisfy a speci�ed trend.

{ SDL Query language (Agrawal et al., VLDB '95)

{ GUI to generate queries.

� B. Lent, R. Agrawal and R. Srikant, \Discovering
Trends in Text Databases", KDD '97.
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Upward Trends in Patent Data
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Growing Concern for Privacy of Digital

Information

� Popular Press:

{ Economist: The End of Privacy (May 99)

{ Time: How to Protect Your Privacy Online (July
2001)

� Govt directives/commissions:

{ European directive on privacy protection (Oct 98)

{ Information and privacy commissioner, Ontario
(Jan 98)

� Special issue on internet privacy, CACM, Feb 99

� S. Gar�nkel, "Database Nation: The Death of
Privacy in 21st Century", O' Reilly, Jan 2000
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Privacy Surveys

� [CRA99b] survey of web users:

{ 17% privacy fundamentalists

{ 56% pragmatic majority

{ 27% marginally concerned

� [Wes99] survey of web users:

{ 82% : privacy policy matters

{ 14% don't care

� Not equally protective of every �eld

{ may not divulge at all certain �elds;

{ may not mind giving true values of certain �elds;

{ may be willing to give not true values but
modi�ed values of certain �elds.
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Technical Question

� The primary task in data mining: development of
models about aggregated data.

� Can we develop accurate models without access to
precise information in individual data records?

� R. Agrawal and R. Srikant, \Privacy Preserving
Data Mining", SIGMOD 2000.
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Talk Overview

� Sequential Patterns & Trends

� Privacy Preserving Data Mining

{ Randomization protects information at the
individual level.

{ Algorithm to reconstruct the distribution of
values.

{ Use reconstructed distributions in data mining
algorithms, e.g. to build decision-tree classi�er.

{ How well does it work?

� The Research Challenge
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Using Randomization to protect Privacy

� Return xi + r instead of xi, where r is a random
value drawn from a distribution.

{ Uniform

{ Gaussian

� Fixed perturbation { not possible to improve
estimates by repeating queries.

� Algorithm knows parameters of r's distribution.
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Reconstruction Problem

� Original values x1; x2; : : : ; xn

{ realizations of iid random variablesX1;X2; : : : ;Xn,

{ each with the same distribution as random
variable X.

� To hide these values, we use y1; y2; : : : ; yn

{ realizations of iid random variables Y1; Y2; : : : ; Yn,

{ each with the same distribution as random
variable Y .

Given

� x1+y1; x2+y2; : : : ; xn+yn

� the density function fY for Y ,

estimate the density function fX for X.
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Using Bayes' Rule

� Assume we know both fX and fY .

� Let wi � xi+yi.

fX1(a jX1+Y1 = w1)

=
fX1+Y1(w1 jX1 = a) fX1(a)

fX1+Y1(w1)

(using Bayes' rule for density functions)

=
fX1+Y1(w1 jX1 = a) fX1(a)R

1

�1
fX1+Y1(w1 jX1 = z) fX1(z) dz

=
fY1(w1�a) fX1(a)R

1

�1
fY1(w1�z) fX1(z) dz

(Y1 independent of X1)

=
fY (w1�a) fX(a)R

1

�1
fY (w1�z) fX(z) dz

(fX1 � fX, fY1 � fY )

f
0

X
(a) �

1

n

nX

i=1

fXi(a jXi+Yi = wi)

=
1

n

nX

i=1

fY (wi � a) fX(a)R
1

�1
fY (wi � z) fX(z) dz
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Reconstruction Method: Algorithm

f0X := Uniform distribution
j := 0 // Iteration number
repeat

Use equation to compute a new estimate f j+1X .
j := j + 1

until (stopping criterion met)

Stopping Criterion: Stop when di�erence between
successive estimates of the original distribution
becomes very small (1% of the threshold of the �2

test).
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Using Partitioning to Speed Computation

� distance(z, wi) � distance between the mid-points
of the intervals in which they lie, and

� density function fX(a) � the average of the density
function over the interval in which a lies.

f 0X(a) =
1

n

nX

i=1

fY (wi � a) fX(a)R
1

�1
fY (wi � z) fX(z) dz

becomes

Pr0(X 2 Ip) =

1

n

kX

s=1

N(Is)�
fY (m(Is)�m(Ip)) Pr(X 2 Ip)Pk

t=1 fY (m(Is)�m(It)) Pr(X 2 It)

� Can be computed in O(k2) time, where k is the
number of intervals.
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Maximum Likelihood Estimate

� The above algorithm (minus the interval
approximation) converges to the maximum
likelihood estimate.

{ D. Agrawal and C.C. Aggarwal, \On the Design
and Quanti�cation of Privacy Preserving Data
Mining Algorithms", PODS 2001.
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How well does this work?

� Uniform random variable [-0.5, 0.5]
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Algorithms

Global:

� Reconstruct for each attribute once at the
beginning.

� Induce decision tree using reconstructed data.

ByClass:

� For each attribute, �rst split by class, then
reconstruct separately for each class.

� Induce decision tree using reconstructed data.

Local:

� As in ByClass, split by class and reconstruct
separately for each class.

� However, reconstruct at each node (not just once).
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Methodology

� Compare accuracy of Global, ByClass and Local
against

{ Original: unperturbed data without randomization.

{ Randomized: perturbed data but without making
any corrections for randomization.

� Synthetic data generator from [AGI+92].

� Training set of 100,000 records, split equally
between the two classes.

R. Srikant 28



Quantifying Privacy

If it can be estimated with c% con�dence that a
value x lies in the interval [x1; x2], then the interval
width (x2 � x1) de�nes the amount of privacy at c%
con�dence level.

� Example: Randomization Level for Age[10,90]

{ Given a perturbed value 40

{ 95% con�dence that true value lies in [30,50]

{ Interval Width : 20
Range : 80

) 25% randomization level

� Uniform: between [��; + �]

� Gaussian: mean � = 0 and standard deviation �

Con�dence
50% 95% 99.9%

Uniform 0:5� 2� 0:95� 2� 0:999� 2�
Gaussian 1:34� � 3:92� � 6:8� �
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Synthetic Data Functions

� Class A if function is true, Class B otherwise.

F1 (age < 40) _ ((60 � age)

F2 ((age < 40) ^ (50K � salary � 100K)) _

((40 � age < 60) ^ (75K � salary � 125K)) _

((age � 60) ^ (25K � salary � 75K))

F3 ((age < 40)^

(((elevel 2 [0::1]) ^ (25K � salary � 75K)) _

((elevel 2 [2::3]) ^ (50K � salary � 100K)))) _

((40 � age < 60)^

(((elevel 2 [1::3]) ^ (50K � salary � 100K)) _

(((elevel = 4)) ^ (75K � salary � 125K)))) _

((age � 60)^

(((elevel 2 [2::4]) ^ (50K � salary � 100K)) _

((elevel = 1)) ^ (25K � salary � 75K))))

F4 (0:67� (salary+ commission)� 0:2� loan� 10K) > 0

F5 (0:67� (salary+ commission)� 0:2� loan+

0:2� equity� 10K) > 0

where equity = 0:1� hvalue� max(hyears� 20; 0)
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Classi�cation Accuracy
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Change in Accuracy with Privacy
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Potential Privacy Breaches

� Distribution is a spike.

{ Example: Everyone is of age 40.

� Some randomized values are only possible from a
given range.

{ Example: Add U[-50,+50] to age and get 125 )
True age is � 75.

{ Not an issue with Gaussian.
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Potential Privacy Breaches (cont.)

� Most randomized values in a given interval come
from a given interval.

{ Example: 60% of the people whose randomized
value is in [120,130] have their true age in [70,80].

{ Implication: Higher levels of randomization will
be required.

� Correlations can make previous e�ect worse.

{ Example: 80% of the people whose randomized
value of age is in [120,130] and whose randomized
value of income is [...] have their true age in
[70,80].

� Given a dataset, we can search for privacy breaches.

{ But how do we do it in advance?
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Cryptographic Approach

� Y. Lindell and B. Pinkas, \Privacy Preserving Data
Mining", Crypto 2000, August 2000.

� Problem: Two parties owning con�dential databases
wish to build a decision-tree classi�er on the union of
their databases, without revealing any unnecessary
information.

� Malicious adversary: can alter its input, e.g., de�ne
input to be the empty database.

� Semi-honest (or passive) adversary: Correctly
follows the protocol speci�cation, yet attempts
to learn additional information by analyzing the
messages.
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Private Distributed ID3

� Key problem: �nd attribute with highest information
gain.

� We can then split on this attribute and recurse.

� Information Gain: Need to compute

{
P

j

P
i jT (aj; ci)j log jT (aj; ci)j

{
P

j jT (aj)j log jT (aj)j.

{ T (ci; aj) = set of records in class ci with attribute
A = aj.

� Given v1 known to party 1 and v2 known to party 2,
compute (v1 + v2) log(v1 + v2) and output random
shares.

� Given random shares for each attribute, use Yao's
protocol to compute information gain.
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Cryptographic Approach (Summary)

� Solves di�erent problem (vs. randomization)

� E�cient with semi-honest adversary and small
number of parties.

� Gives (almost) the same solution as the non-privacy-
preserving computation (unlike randomization).

� Will not scale to individual user data.

R. Srikant 37



Talk Overview

� Sequential Patterns & Trends

� Privacy Preserving Data Mining

� The Research Challenge

R. Srikant 38



Randomizing Time Values

� Similar to randomizing age or salary.

� But what if we want to �nd trends at di�erent levels
of granularity?

{ People who visit the website on a Saturday ...

{ People who visit the website in March ...
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Randomizing a Boolean Attribute

� Warner, \Randomized response: A survey technique
for eliminating evasive answer bias", J. Am. Stat.
Assoc. 1965.

� Boolean variables, e.g., \drug addiction = yes/no".

� Keep the value with probability p, and 
ip it with
probability 1� p.

� Let fy be fraction of records with true \yes",
f 0y fraction of records with \yes" after
randomization:

f 0y = fyp+ (1� fy)(1� p)

fy = (f 0y � (1� p))=(2p � 1)
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Randomizing Transaction Data

� For each (unique) item in the transaction, keep item
with probability p and replace item with a random
item with probability 1� p.

� Can (probably) compute formulae for support and
variance.

R. Srikant 41



Privacy Breaches with Sequential

Patterns

� Replace item with 80% probability.

� 10 million transactions, h (F, R) (RE) i has 1%
support.

� Prob. of retaining pattern = 0:23 = 0.8%

� 805 occurrences of h (F, R) (RE) i in randomized
data.

{ 800 of these were in the original data-sequence.

{ 5 of these were generated from replaced items.

� Estimate with 99% con�dence that pattern was
originally present!

� Ack: Alexandre Ev�mievski
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The Research Challenge

� Goal: Have your cake and mine it too!

{ Preserve privacy at the individual level, but still
build accurate models.

� Can we discover sequential patterns and trends,
while avoiding privacy breaches?
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Related Work: Statistical Databases

� Statistical Databases : provide statistical information without

compromising sensitive information about individuals (surveys:
[AW89] [Sho82])

� Query Restriction

{ restrict the size of query result (e.g. [FEL72][DDS79])

{ control overlap among successive queries (e.g. [DJL79])

{ keep audit trail of all answered queries (e.g. [CO82])

{ suppress small data cells (e.g. [Cox80])

{ cluster entities into mutually exclusive atomic populations
(e.g. [YC77])

� Data Perturbation

{ replace the original database by a sample from the same
distribution (e.g. [LST83][LCL85][Rei84])

{ sample the result of a query (e.g. [Den80])

{ swap values between records (e.g. [Den82])

{ add noise to the query result (e.g. [Bec80])

{ add noise to the values (e.g. [TYW84][War65])
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Related Work: Statistical Databases

(cont.)

� Negative results: cannot give high quality statistics
and simultaneously prevent partial disclosure of
individual information [AW89]

� Negative results not directly applicable to privacy-
preserving data mining.

{ Also want to prevent disclosure of con�dential
information

{ But su�cient to reconstruct original distribution
of data values, i.e. not interested in high quality
point estimates
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