
An XPath-based Preference Language for P3P

Rakesh Agrawal Jerry Kiernan Ramakrishnan Srikant Yirong Xu

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120

ABSTRACT
The Platform for Privacy Preferences (P3P) is the most significant
effort currently underway to enable web users to gain control over
their private information. The designers of P3P simultaneously de-
signed a preference language called APPEL to allow users to ex-
press their privacy preferences, thus enabling automatic matching
of privacy preferences against P3P policies. Unfortunately subtle
interactions between P3P and APPEL result in serious problems
when using APPEL: Users can only directly specify what is un-
acceptable in a policy, not what is acceptable; simple preferences
are hard to express; and writing APPEL preferences is error prone.
We show that these problems follow from a fundamental design
choice made by APPEL, and cannot be solved without completely
redesigning the language. Therefore we explore alternatives to AP-
PEL that can overcome these problems. In particular, we show that
XPath serves quite nicely as a preference language and solves all
the above problems. We identify the minimal subset of XPath that
is needed, thus allowing matching programs to potentially use a
smaller memory footprint. We also give an APPEL to XPath trans-
lator that shows that XPath is as expressive as APPEL.

Categories and Subject Descriptors
K.4.1 [Public Policy Issues]: Privacy

General Terms
Standardization, Languages

Keywords
P3P, APPEL, XPref, XPath, Preference, Privacy-Aware Data Man-
agement, Hippocratic Databases

1. INTRODUCTION
Platform for Privacy Preferences (P3P) is the most significant

effort currently underway to enable web users to gain control over
their private information. It provides a way for a web site to encode
its data-collection and data-use practices in a machine-readable XML
format, known as a P3P policy [10]. The designers of P3P simulta-
neously designed a preference language called APPEL [9] to allow
users to express their privacy preferences. The goal was to enable
users to programmatically check their privacy preferences against
a P3P policy to decide whether to release their data to the web site.
The P3P policy language became a W3C Recommendation in April
2002; APPEL is a Working Draft.

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.

Unfortunately, there are subtle interactions between APPEL and
the P3P policy language that make APPEL extremely hard to use
correctly. We present a critique of APPEL that points out several
shortcomings of APPEL. These shortcomings arise from a funda-
mental design choice: to only allow logical operations at nodes cor-
responding to P3P elements. These shortcomings cannot be over-
come without completely redesigning the language.

We propose a small preference language that uses a strict subset
of XPath 1.0 [7] for almost all of its functionality. It additionally
makes use of the quantified expressioneveryfrom the XPath 2.0
Working Draft [6]. This construct does not increase the expressive
power of XPref, but makes the preferences written in XPref easier
to understand and hence less error prone.1 We refer to the proposed
language as XPref.

Although XPref is a small language, it subsumes the full func-
tionality of APPEL, while avoiding its pitfalls. In essence, XPref
replaces the body of APPEL rules with XPath expressions. XPath
was developed to match the structure of an XML document using
a compact path notation and it was designed to be integrated as a
subsystem within other systems. By reusing XPath, XPref is lever-
aging all the efforts that have gone into debugging its semantics and
developing efficient implementations.

Although XPref is strictly based on XPath, it does not use many
of the expensive features of XPath. So, while we expect many
XPref implementations to use off-the-shelf XPath implementations,
it is possible to build specialized implementations with much smaller
memory footprint. This aspect of XPref is quite attractive for en-
abling preference checking in thin, mobile devices that are likely to
dominate Internet access in the future.

Since XPref subsumes APPEL, it should be possible to program-
matically translate APPEL into XPref. Indeed, we provide a trans-
lation algorithm that should simplify the migration from APPEL to
XPref.

1.1 Paper Road Map
The rest of the paper is structured as follows. We start with a

brief overview of the P3P policy language as well as the APPEL
preference language in Section 2. We critique APPEL in Section 3,
pointing out some of its shortcomings and why it will be hard to
fix them. We present XPref in Section 4 and show how it avoids
the pitfalls of APPEL. We also give an algorithm for translating
APPEL rules into XPref. We discuss related work in Section 5
and conclude with a summary and directions for future work in
Sections 6.

1It is straightforward to write a small preprocessor to transform an
XPref preference into one that strictly uses XPath 1.0 features, or
embed this translation in the XPref processor. Thus, XPref can be
implemented using any standard XPath 1.0 implementation.

We assume familiarity with the basic concepts of XML [16].
Throughout the paper, we useelementandattributeas in the XML
specification. To distinguish XML elements appearing in an AP-
PEL preference from those appearing in a P3P privacy policy, we
will sometimes refer to an APPEL element as anexpression. Its
subelements will be correspondingly calledsubexpressions.

2. P3P POLICY AND APPEL
In this section, we briefly review the core features of the P3P

policy language as well as APPEL. See [10] and [9] for complete
specifications of the policy language and APPEL respectively.

2.1 P3P Policy Language
P3P policies are described in XML format as a sequence of STATE-

MENT elements that include the following subelements:

• PURPOSE: describes purposes for which information is col-
lected. Multiple purposes can be listed in a STATEMENT if
all of them have the same values for RECIPIENT, RETEN-
TION and DATA-GROUPS; otherwise, they are specified in
different STATEMENT elements.

• RECIPIENT: describes the intended users of the collected in-
formation. Multiple recipients can be specified in one state-
ment.

• RETENTION: defines the duration for which the collected
information will be kept.

• DATA-GROUP: provides the list of individual data items (spec-
ified using DATA tags) that are collected for stated purposes
in the statement.

P3P has predefined values for PURPOSE (12 choices), RECIPI-
ENT (6), and RETENTION (5). Examples of PURPOSE include:

• current: completion and support of activity for which data
was provided,

• pseudo-analysis:inferring habits, interests, and other char-
acteristics of individuals, but not to identify specific individ-
uals,

• individual-decision:inferring habits, interests, and other char-
acteristics of individuals, and

• contact:contacting visitors for marketing of services or prod-
ucts through a communication channel other than voice tele-
phone.

Examples of RECIPIENT include:

• ours: ourselves,

• same:legal entities following our practices, and

• unrelated:legal entities whose practices are unknown to us.

Examples of RETENTION include:

• stated-purpose:discarded at the earliest time possible,

• business-practice:long term retention but with a destruction
time table, and

• indefinitely.

P3P also has predefined types of data items. It is also possible to
assign CATEGORIES to data items.

A policy can provideopt-inor opt-outvalues for therequiredat-
tribute of PURPOSE and RECIPIENT elements. The opt-in value
says that the user must provide explicit consent to the stated pur-
pose/recipient. The opt-out value gives the user flexibility to reject
the specified purpose/recipient, but the user needs to take additional
action for the opt-out to take effect.

<POLICY>
... ...
<STATEMENT>

<PURPOSE><current/></PURPOSE>
<RECIPIENT><ours/><same/></RECIPIENT>
<RETENTION><stated-purpose/></RETENTION>
<DATA-GROUP>

<DATA ref="#user.name"/>
<DATA ref="#user.home-info.postal"/>
<DATA ref="#dynamic.miscdata">

<CATEGORIES><purchase/></CATEGORIES>
</DATA>

</DATA-GROUP>
</STATEMENT>

<STATEMENT>
<PURPOSE>

<individual-decision
required="opt-in"/>

<contact required="opt-in"/>
</PURPOSE>
<RECIPIENT><ours/></RECIPIENT>
<RETENTION>

<business-practices/>
</RETENTION>
<DATA-GROUP>

<DATA
ref="#user.home-info.online.email"/>

<DATA ref="#dynamic.miscdata">
<CATEGORIES><purchase/></CATEGORIES>

</DATA>
</DATA-GROUP>

</STATEMENT>
</POLICY>

Figure 1: Volga’s Privacy Policy in P3P

An Example Policy [4] Volga is a bookseller who needs to ob-
tain certain minimum personal information to complete a purchase
transaction. This information includes name, shipping address, and
credit card number. Volga also uses the purchase history of cus-
tomers to offer personalized book recommendations, for which it
needs customers’ email address.

Figure 1 shows what Volga’s policy may look like in the P3P
policy language. The first STATEMENT says that the name, postal
address, and miscellaneous purchase data (i.e., book titles, credit
card number, etc.) will be used for completing the current purchase
transaction.

The second STATEMENT allows Volga to use miscellaneous
purchase data for creating personalized recommendations and email
them to the customer. However, theopt-invalue of therequiredat-
tribute of the purposesindividual-decisionandcontactimplies that
the explicit customer consent is necessary. By default, the value of
therequiredattribute is set toalways, which precludes the possibil-
ity of customer opt-in or opt-out.

2.2 APPEL
Privacy preferences are expressed in APPEL as a list of RULEs

[9]. These rules are matched against a policy in the order in which
they appear. A rule consists of two parts:

• Rule behavior (Rule head):Specifies the action to be taken if
the rule fires. The behavior can berequest, implying that the
policy conforms to preferences specified in the rule body. It
can beblock, implying that the policy does not respect user’s

<appel:RULESET>
<appel:RULE behavior="block">

<POLICY>
<STATEMENT>

<PURPOSE appel:connective="or">
<contact/>
<telemarketing/>

</PURPOSE>
</STATEMENT>

</POLICY>
</appel:RULE>

<appel:RULE behavior="request"/>
<appel:OTHERWISE/>

</appel:RULE>
</appel:RULESET>

Figure 2: A preference in APPEL

preferences. See [9] for other behaviors.

• Rule body: Provides the pattern that is matched against a
policy. The format of a pattern follows the XML structure
used in specifying privacy policies described earlier.

An APPEL rule is satisfied by matching its constituent expres-
sions and (recursively) their subexpressions. Every APPEL expres-
sion has aconnectiveattribute that defines the logical operators be-
tween its subexpressions. A connective can be:or, and, non-or
(negated or),non-and(negated and),or-exact, andand-exact. The
default connective isand. The two unusual connectives areand-
exactandor-exact, whose semantics are as follows:

• and-exact:A successful match is made if (a) all of the con-
tained expressions can be found in the policy and (b) the pol-
icy contains only elements listed in the rule. For theand
connective, only part (a) needs to be satisfied, not part (b).

• or-exact: A successful match is made if (a) one or more of
the contained expressions can be found in the policy, and (b)
the policy only contains elements listed in the rule. For the
or connective, only part (a) needs to be satisfied, not part (b).

An Example Preference Figure 2 shows an APPEL rule set that
implements the following preference:

Block sites whose policies indicate that the informa-
tion collected can be used forcontactor telemarketing.

The rule set consists of two rules. The first rule specifies conditions
under which the access to a site must be blocked. The second rule
is guaranteed to fire if the first one does not since the rule body
contains theappel:otherwiseelement and allows the site to be ac-
cessed.

3. A CRITIQUE OF APPEL
At first glance, APPEL comes across as an attractive language.

It is small, readable, and uses standard XML for syntax. The user
has to simply provide the pattern of the substructure of interest in
the rule body and associate the desired behavior in the rule head.
Unfortunately, the APPEL constructs interact with the P3P policy
language in unintended ways, making it non-trivial to get even sim-
ple preferences right. It is easy to write a preference that appears
correct and find that it does not accomplish the intended goal. The
shortcomings we identify grew out of our experiences with APPEL

<appel:RULESET >
<appel:RULE behavior="request" >

<POLICY>
<STATEMENT>

<PURPOSE appel:connective="or-exact" >
<current/ ><pseudo-analysis/ >

</PURPOSE>
</STATEMENT>

</POLICY >
</appel:RULE >

<appel:RULE behavior="block"/ >
<appel:OTHERWISE/ >

</appel:RULE >
</appel:RULESET >

Figure 3: Jack’s first attempt. This preference does not block
unacceptable websites because other statements in the same
policy might violate the preference.

while testing our implementation of P3P [4]. Concurrently, the im-
plementors of the JRC APPEL engine have also pointed out some
deficiencies of APPEL [12].

We invite the reader to join in Jack’s odyssey with APPEL. Jack
wants to write a very simple preference:

PREFERENCE 1. Only the purposes current and pseudo-analysis
are acceptable.

We will share Jack’s tribulations before getting it right in APPEL.

3.1 Cannot Specify What Is Acceptable
Jack thinks that APPEL has provided the or-exact connective

precisely for expressing preferences like his, and writes the pref-
erence shown in Figure 3. This preference appears to permit access
to only those sites whose privacy policies have statements contain-
ing strictly thecurrentor pseudo-analysispurposes. After all, the
semantics of or-exact is that if a statement lists purposes other than
currentandpseudo-analysis, the rule will not match.

Unfortunately the above preference does not achieve what Jack
intended. The source of the problem is that the policy language al-
lows a policy to contain multiple statements and the rule fires if any
of the statements satisfies the rule. For example, a site may have
a policy containing two statements; the first statement only lists
currentas the purpose, but the second statement includestelemar-
keting. Jack’s preference will match the website’s policy because
of the first statement, and Jack has unknowingly consented to tele-
marketing.

3.2 Rejects Good Policies
At this point, Jack spends more time with the APPEL manual and

adds theand-exactconnective to thepolicy element in his APPEL
rule, as shown in Figure 4. He thinks thatand-exactwill force all
statements in the matching policy to strictly contain the purposes
he wants.

Unfortunately, this modification does not work. Thepolicy el-
ement in a P3P policy usually contains other subelements such as
entityandaccess, apart fromstatement. Thus placing an and-exact
connective atpolicy will cause the rule to fail for many acceptable
websites whosepolicyelement included other subelements, even if
all the statements conformed to the rule.

3.3 Convoluted Specifications

<appel:RULESET >
<appel:RULE behavior="request" >

<POLICY appel:connective=" and-exact" >
<STATEMENT>

<PURPOSE appel:connective="or-exact" >
<current/ ><pseudo-analysis/ >

</PURPOSE>
</STATEMENT>

</POLICY >
</appel:RULE >

<appel:RULE behavior="block"/ >
<appel:OTHERWISE/ >

</appel:RULE >
</appel:RULESET >

Figure 4: Jack’s second attempt. This preference blocks many
acceptable websites, since thepolicy element in the P3P policy
usually has other subelements in addition tostatement.

<appel:RULESET >
<appel:RULE behavior="block" >

<POLICY>
<STATEMENT>

<PURPOSEappel:connective=" or" >
<admin/><develop/><tailoring/ >
<pseudo-decision/>
<individual-analysis/>
<individual-decision/>
<contact/>
<historical/><telemarketing/>
<other-purpose/>

</PURPOSE>
</STATEMENT>

</POLICY >
</appel:RULE >

<appel:RULE behavior="request"/ >
<appel:OTHERWISE/ >

</appel:RULE >
</appel:RULESET >

Figure 5: Jack’s third attempt. Convoluted specification which
does not block unacceptable websites that use extensions.

Jack now starts wondering if he can solve the problem by con-
verting his specification of what is acceptable into what is unaccept-
able. He notices there is a fixed number of predefined purposes in
P3P. So, he rewrites his preference, as shown in Figure 5, enumer-
ating purposes that are unacceptable. Notice that the preference has
become harder to understand. As we will see momentarily, this dif-
ficulty is exacerbated when we have preferences that involve more
than one dimension (e.g., involve both purpose and recipient).

3.4 Lack Of Robustness
Jack’s travails are not over yet. The P3P policy language allows

websites to define extensions to purpose. Jack has to guard him-
self against the possibility that a website may define and add, say,
telemarketing-homeas a subelement ofpurposein its policy. This
policy will match Jack’s preference as written in Figure 5 and Jack
has again inadvertently consented to telemarketing. The solution is
to addextensionas an additional subelement ofpurposein Jack’s
preference.

And

purpose != "current"

purpose != "pseudo−analysis"

purpose != "individual−analysis"

recipient != "ours"

Or

Figure 6: Parse tree for logical expression (after double nega-
tion) corresponding to Jack’s second preference.

statement
connective

purpose
connective

recipient
connective

"current" "individual−analysis"

"pseudo−analysis"

"ours"

Figure 7: Fragment of XML parse tree for P3P policy: Shows
logical expressions involving purpose and recipient that can be
expressed in a single rule in APPEL.

3.5 Simple Combinations Are Hard To Ex-
press

Jack now decides that he does not mind websites using his per-
sonally identifiable information for individual analysis so that they
may give him personalized recommendations, as long as they do
not give this information to anyone else. Thus, Jack wishes to ex-
press the following preference, which is only a slightly extended
version of his earlier preference.

PREFERENCE 2. The purposescurrentandpseudo-analysisare
acceptable. The purposeindividual-analysisis also acceptable, as
long as the recipient isours.

Jack has learned that he must specify preferences by writing
rules about what is unacceptable. So, Jack converts

∀ purpose, recipient (purpose = “current”∨ purpose =
“pseudo-analysis”∨ (purpose = “individual-analysis”
∧ recipient = “ours”)) =⇒ accept

into

∃ purpose, recipient (purpose6= “current” ∧ purpose
6= “pseudo-analysis”∧ (purpose6= “individual-analysis”
∨ recipient6= “ours”) =⇒ block

Consider the parse tree shown in Figure 6 corresponding to the
latter expression above. In a single APPEL rule, we can only spec-
ify those logical expressions whose parse trees are (structurally)
subtrees of the XML tree corresponding to the P3P schema. For
example, Figure 7 shows the class of logical expressions involving
three purpose values and one recipient value that can be specified
in a single APPEL rule. Clearly, there is no way to map the tree
from Figure 6 into the tree in Figure 7. Therefore, this expression
cannot be directly expressed in APPEL.

<appel:RULESET>
<appel:RULE behavior="block">

<POLICY>
<STATEMENT>

<PURPOSE appel:connective="or">
<admin/><develop/><tailoring/>
<pseudo-decision/>
<individual-decision/>
<contact/>
<historical/><telemarketing/>
<other-purpose/>
<extension/>

</PURPOSE>
</STATEMENT>

</POLICY>
</appel:RULE>

<appel:RULE behavior="block">
<POLICY>

<STATEMENT>
<PURPOSE appel:connective="or">

<individual-analysis/>
</PURPOSE>
<RECIPIENT appel:connective="or">

<delivery/><same/>
<other-recipient/>
<unrelated/><public/>
<extension/>

</RECIPIENT>
</STATEMENT>

</POLICY>
</appel:RULE>

<appel:RULE behavior="request"/>
<appel:OTHERWISE/>

</appel:RULE>
</appel:RULESET>

Figure 8: APPEL rules for the preference: (purpose = current
or purpose = pseudo-analysis or (purpose = individual-analysis
and recipient = ours)).

Fortunately, Jack realizes that the above expression is the same
as evaluating the following two rules:

Rule 1:∃ purpose (purpose6= “current” ∧ purpose6=
“pseudo-analysis”∧ purpose6= “individual-analysis”)
=⇒ block

Rule 2: ∃ purpose, recipient (purpose = “individual-
analysis”∧ recipient6= “ours”) =⇒ block

He now has to further convert all the negations into enumerations
to get the complex preference shown in Figure 8.2

3.6 Is Jack Alone?
We contend that Jack was not alone in being fooled into writ-

ing incorrect preferences; those well versed in APPEL have fallen
prey to the same traps. For example, the “simple ruleset” exam-
ple in Figure 3.1 of the APPEL Working Draft [9] makes several
mistakes:

• The rule in lines 27–40 does not account for other statements

2We could also combine the two STATEMENTs into a single
<POLICY connective=”or”>, and thus have only one APPEL rule.
However, the combination is just as complex, and in fact the ver-
sion in Figure 8 is slightly easier to read.

<appel:RULESET >
<appel:RULE behavior=" block" >

<POLICY>
<STATEMENT>

<PURPOSEappel:connective=" any-except" >
<current/ ><pseudo-analysis/ >

</PURPOSE>
</STATEMENT>

</POLICY >
</appel:RULE >

<appel:RULE behavior="request"/ >
<appel:OTHERWISE/ >

</appel:RULE >
</appel:RULESET >

Figure 9: Jack’s first preference with a new “any-except” con-
nective added to APPEL.

in the same policy violating the preference (same mistake as
Jack’s first attempt).

• The rule in lines 17–23 does not block extensions (same mis-
take as Jack’s third attempt).

The example APPEL preferences provided by JRC P3P Resource
Center [13] also do not block extensions.

It is also interesting to observe that the APPEL designers recom-
mend the following about the ordering of rules in a ruleset (Section
5.2 of [9]):

After starting out with all cases that are deemed
acceptable (request rules), append all situations under
which only limited request should be made (limited
rules). The final set of rules cover all cases that should
result in a blocked request (block rules).

However, as we showed with our examples, the correct way to write
APPEL preferences generally is to place block rules before the re-
quest rules!

3.7 Can We Fix APPEL?
We give below two suggestions that can partially ameliorate some

of APPEL’s problems.

3.7.1 any-exceptconnective
One idea is to add anany-exceptconnective to APPEL that re-

turns true if the P3P policy element contains any subelements ex-
cept those listed in the APPEL preference.3 Such an operator would
have allowed Jack to express his first preference as shown in Fig-
ure 9.

However, for writing Preference 2, Jack would still have to trans-
form the relatively simple double negation into a form that could
actually be expressed in APPEL (due to the constraint on the op-
erators). If Jack had even a slightly more complex preference that
involved combinations of purpose, recipient, and data, the resulting
preference would become very convoluted even with anany-except
connective.

3.7.2 STATEMENTSelement
Jack’s second attempt (Figure 4) would have worked if the P3P

policy language had a STATEMENTS element that was the parent
3The APPEL connectives for negation –non-andandnon-or– are
logical negations, not set negations, and hence their semantics are
completely different from the semantics ofany-except.

<appel:RULESET>
<appel:RULE behavior="request">

<POLICY>
<STATEMENTS

appel:connective="or-exact">
<STATEMENT>

<PURPOSE
appel:connective="or-exact">
<current/><pseudo-analysis/>

</PURPOSE>
</STATEMENT>
<STATEMENT>

<PURPOSE
appel:connective="or-exact">
<individual-analysis/>

</PURPOSE>
<RECIPIENT

appel:connective="or-exact">
<ours/>

</RECIPIENT>
</STATEMENT>

</STATEMENTS>
</POLICY>

</appel:RULE>

<appel:RULE behavior="block"/>
<appel:OTHERWISE/>

</appel:RULE>
</appel:RULESET>

Figure 10: The STATEMENTS tag does not solve the problem
with the constraints on the logical expression parse tree: this
preference is incorrect.

of all the STATEMENT elements (rather than POLICY being the
parent of the STATEMENT elements). In that case, Jack would
have associated theand-exactconnective with the STATEMENTS
tag instead of the POLICY tag. Thus it is natural to wonder whether
modifying the P3P standard by adding a STATEMENTS tag would
cure APPEL’s shortcomings.

Consider Jack’s second preference. We still have the problem
that the expression parse tree has a structure that is not a subtree
of the XML tree for the P3P policy. While the preference shown
in Figure 10 appears to express this preference, it is incorrect. A
P3P policy with a single statement that contains all three purposes,
along with the recipientours, would incorrectly be rejected by this
preference. The only advantage of the STATEMENTS tag is that
we can now break this preference into two rules that are easier to
understand (though not easier to get to from the original prefer-
ence):

Rule 1: ∀ purpose, recipient ((purpose = “current”∨
purpose = “pseudo-analysis”∨ purpose = “individual-
analysis”)∧ recipient = “ours”) =⇒ accept

Rule 2: ∀ purpose (purpose = “current”∨ purpose =
“pseudo-analysis”=⇒ accept

3.8 The Fundamental Limitation Of APPEL
As we discussed in Section 3.5, an APPEL rule can be viewed

as a tree rooted at the RULE node. APPEL operators (connectives)
can only be placed at the nodes. The fundamental limitation of
APPEL arises from the fact that the children of a node can only be
combined using the logical connective specified at the node. It is
not possible to combine them in any other logical way, except to
break them in multiple rules (as we did in Figure 8). APPEL also

chose not to include logical operators for combining multiple rules
in a ruleset; they are evaluated strictly in order. Taken together,
these two limitations box in APPEL.

We are, therefore, not sanguine that band-aiding will fix the prob-
lems of APPEL. Fortunately, there is a better way out. We can
design an XPath-based language that incorporates the lessons and
aspirations of APPEL, subsumes APPEL’s functionality, and lever-
ages all the past effort in debugging the semantics of XPath and
developing efficient implementations. We discuss this language,
which we call XPref, next.

4. XPref
We begin by giving the rationale for the design of XPref in Sec-

tion 4.1. We give a summary of XPref in Section 4.2, and then
give some examples to illustrate its functionality in Section 4.3.
We show that XPref subsumes the functionality of APPEL in Sec-
tion 4.4.

We assume familiarity with XPath [7]. We include a brief overview
of XPath in Appendix A for quick reference. Appendix B describes
the subset of XPath 1.0 used in XPref. Appendix C gives a com-
plete BNF specification of XPref.

4.1 Design Rationale
The starting point of any language design is the articulation of

what the language is supposed to accomplish and what it should be
able to express in a natural way. Since the APPEL designers in-
corporated feedback from potential users when designing APPEL,
we treat the goals of APPEL (not the actual implementation) as the
desiderata for XPref.

APPEL was designed such that each rule accomplishes one of
the following goals:

1. Specify-Unacceptable:Identify some combination of P3P
policy elements (e.g., purpose and recipient) in the policy
which is unacceptable (and then block).

2. Specify-Acceptable:Verify that all combinations of P3P ele-
ments are acceptable (and then request).

3. Catch-All: Provide a “catch-all” placeholder that fires if pre-
vious rules fail to fire.

Unfortunately, the implementation of APPEL allows
specify-unacceptable rules, but not specify-acceptable rules. In ad-
dition, even specify-unacceptable rules are constrained in terms of
the logical expressions that could be provided in a single rule. The
main design goal of XPref was to remove both these deficiencies.

We decided to base our design on XPath for the following rea-
sons. XPath has been designed to be integrated as a subsystem
within other systems. It provides a common syntax and seman-
tics shared across multiple systems and is used to match the struc-
ture of an XML document against a compact path notation used
for navigating through the hierarchical structure of an XML doc-
ument. Since P3P policies are XML documents, XPath is a natu-
ral contender for expressing the rule conditions that can be pattern
matched against policies. In addition, by using XPath, we automat-
ically accrue all the benefits of using a mature standard.

XPath can both identify combinations of P3P elements, and ver-
ify that only specified combinations of P3P elements are present.
Thus we can use XPath to define both specify-unacceptable and
specify-acceptable rules, and express arbitrary logical expressions.

Having replaced APPEL rule bodies with XPath expressions, we
retained the APPEL constructs for specifying rule behavior and
rulesets. These constructs are specified in an XML format and
naturally integrate with the rule bodies written in XPath. We also
retained the APPEL semantics of evaluating rules in the order in
which they appear in a ruleset.

4.2 Overview of XPref
XPref retains the two outermost XML elements in APPEL: RULE-

SET and RULE. However, rather than using the subelements of
RULE to specify acceptable or unacceptable combinations of P3P
elements, XPref uses an XPath expression for this purpose. This
expression is specified in a newconditionattribute of the rule. A
rule fires if the XPath expression returns a non-empty result. The
other attributes of RULE, such as explanation, are retained as such
from the APPEL specification.

XPref uses a strict subset of XPath 1.0 [7] for writing rule con-
ditions, with one exception: the quantified expressioneveryis bor-
rowed from XPath 2.0 [6]. Having a small subset admits the pos-
sibility of smaller footprint implementations of XPref. A smaller
footprint is important for preference checking in the mobile clients
that are likely to dominate Internet access in the future. Appendix B
specifies this subset and also explains our choices.

Theeveryexpression does not increase the expressive power of
XPref, but we chose to include it to simplify preferences that re-
quire exact selection of a combination of policy elements. It is
straightforward to write a small preprocessor to translate an XPref
preference into one that strictly uses XPath 1.0 features, or embed
this translation in the XPref processor. Thus, XPref can be imple-
mented using any standard XPath 1.0 implementation.

4.3 Illustrative Examples

4.3.1 Specifying what is unacceptable
A preference that blocks if the P3P policy includescontactor

telemarketingpurposes can be written in XPref as follows4:

<RULESET>
<RULE behavior="block"

condition="/POLICY/STATEMENT/PURPOSE/*
[name(.) = "contact" or

name(.) = "telemarketing"]" />

<RULE behavior="request" condition="true"/>
</RULESET>

The rule’s condition starts at the root node and descends to the
POLICY node following the child axis from the root. It then de-
scends further to the STATEMENT node, and then the PURPOSE
node. Next, the “*” operator selects all children elements of the
context (PURPOSE) node. We then evaluate a predicate – denoted
using square brackets – over each selected element. This predicate
tests whether the name of the selected element is eithercontactor
telemarketing. If the predicate is satisfied, the corresponding ele-
ment is returned. Thus the output of the XPath expression is the
set of elements in the P3P policy that are children of some PUR-
POSE element, and whose name is eithercontactor telemarketing.
If this set contains at least one element, the rule will fire and re-
turn block. Otherwise, the evaluator proceeds to the next rule, and
returnsrequest.

If we wish to modify the above preference not to block websites
that requireopt-in for contactandtelemarketing, we would rewrite
the rule as follows:

4The quoted strings in the condition should be escaped since they
are themselves contained in quoted strings. However, for clarity of
exposition, we don’t show the escape sequences in the examples.

<RULESET>
<RULE behavior="block"

condition="/POLICY/STATEMENT/PURPOSE/*
[(name(.) = "contact" or

name(.) = "telemarketing") and
@required != "opt-in"]" />

<RULE behavior="request" condition="true"/>
</RULESET>

We now give an example involving two different elements: pur-
pose and recipient. The following preference blocks all policies
where the purpose isindividual-analysisand the recipient is not
ours in any of the statements in a policy:

<RULESET>
<RULE behavior="block"

condition="/POLICY/STATEMENT [
PURPOSE/* [

name(.) = "individual-analysis"]
and RECIPIENT/* [

name(.) != "ours"]
]" />

<RULE behavior="request" condition="true"/>
</RULESET>

4.3.2 Specifying what is acceptable
We now illustrate that theeveryexpression makes it easy to ex-

press the acceptable combinations in a preference. The follow-
ing preference ensures that all purposes across all statements are
strictly currentor pseudo-analysis.

<RULESET>
<RULE behavior="request"

condition="/POLICY [
every $pname in
STATEMENT/PURPOSE/* satisfies

(name($pname) = "current" or
name($pname) = "pseudo-analysis")

]" />

<RULE behavior="block" condition="true"/>
</RULESET>

4.3.3 Combinations
Preference 2, which gave Jack so much trouble in Section 3.5,

can be expressed using theeveryexpression, as shown in Figure 11.
This preference can also be written using only XPath 1.0 as fol-

lows, though the preference writer now has to think in terms of
what is unacceptable, rather than what is acceptable.

<RULESET>
<RULE behavior="block"

condition="/POLICY/STATEMENT/PURPOSE/*
[name(.) != "current" and

name(.) != "pseudo-analysis" and
(name(.) != "individual-analysis"

or ../../RECIPIENT/*
[name(.) != "ours"])

]" />

<RULE behavior="request" condition="true"/>
</RULESET>

<RULESET>
<RULE behavior="request"

condition="/POLICY [
every $stmt in STATEMENT satisfies (

every $purpose in $stmt/PURPOSE/*, every $recip in $stmt/RECIPIENT/* satisfies
(name($purpose) = "current" or

name($purpose) = "pseudo-analysis" or
(name($purpose) = "individual-analysis" and name($recip) = "ours")))]" />

<RULE behavior="block" condition="true"/>
</RULESET>

Figure 11: Preference 2 in XPref

4.4 Translating APPEL into XPref
Figure 12 gives an algorithm for translating the body of an AP-

PEL rule into an XPref condition. In addition to showing that XPref
subsumes the functionality of APPEL, this algorithm can also be
used for converting existing APPEL preferences into XPref. To
simplify exposition, the algorithm pseudocode omits checks for
avoiding generating superfluous parenthesis as well as unneeded
trailing OR or AND operators in the query.

An APPEL expression is satisfied by matching its attributes and
the constituent subexpressions which are connected through the
APPEL logical operators. The algorithm for translating a rule body
into XPref works as follows:

• The match() function generates the XPref code for matching
an APPEL expression. It first matches any attributes speci-
fied in the APPEL expression (lines 6–9). Next, it recursively
matches any subexpressions (lines 10), with the appropriate
connective, by calling the matchSubexpressions() function.
Finally, it combines the conditions for the attributes and the
subexpressions and associates them with the current P3P el-
ement (line 11).

• The matchSubexpressions() function recursively matches each
subexpression (line 17). It then negates the expression if the
connective isnon-andor non-or(lines 18–19). If the connec-
tive is and-exactor or-exact, it calls the noOther() function
(lines 20–21) to ensure that the P3P element does not contain
any additional subelements.

• The noOther() function ensures that each P3P subelement
matches at least one of the APPEL subexpressions.

• The main() function calls matchSubexpressions() giving the
rule body as the argument and associates the resulting condi-
tion with the root P3P element (line 3).

Example The rule body in Figure 13 will be converted by the
translation algorithm as:

/self::node() [POLICY [STATEMENT [PURPOSE [
(contact [@required="always"]

OR telemarketing)
]]]]

If the connective in line 4 wasand-exactinstead ofor, the algo-
rithm will instead generate:

/self::node() [POLICY [STATEMENT [PURPOSE [
((contact [@required="always"]

AND telemarketing)
AND every $s in ./* satisfies

($s/self::contact [@required="always"]
OR $s/self::telemarketing))

]]]]

1 String main (RuleBodyr) {
2 StringxpSub= matchSubexpressions(r);
3 return “/self::node() [” +xpSub+ “]”;
4 }
5 String match (Expressione) {

// match attributes ofe
6 StringxpAttr;
7 for each attributeattr of e do
8 xpAttr += “@” + attr.name() + “=" ” + attr.value() + “" ”;
9 xpAttr += “AND”;

// match subexpressions ofe
10 StringxpSub= matchSubexpressions(e);

11 returne.name() + “[” +xpAttr + “AND (” + xpSub+ “)]”;
12 }
13 String matchSubexpressions (Expressione) {
14 StringxpSub;
15 letθ = e.connective();

// θ.orAnd() returns the “or” or “and” part ofθ
16 for each subexpressions of e do
17 xpSub+= match(s) + θ.orAnd();

18 if θ is “non-or” or “non-and”then
19 xpSub= “NOT (” + xpSub+ “)”;
20 else ifθ is “or-exact” or “and-exact”then
21 xpSub= “(” + xpSub+ “) AND” + noOther(e);

22 return xpSub;
23 }
24 String noOther (Expressione) {
25 Stringxp = “every $s in ./* satisfies (”;
26 for each subexpressions of e do
27 xp+= “$s/self::” + match(s) + “OR”;
29 return xp + “)”;
30 }

Figure 12: Algorithm for translating an APPEL rule body into
an XPref condition.

1 <appel:RULE behavior="block">
2 <POLICY>
3 <STATEMENT>
4 <PURPOSE appel:connective="or">
5 <contact required="always"/>
6 <telemarketing/>
7 </PURPOSE>
8 </STATEMENT>
9 </POLICY>
10 </appel:RULE>

Figure 13: Example APPEL Preference

5. RELATED WORK
While developing APPEL, the APPEL working group explored

the possibility of using an existing database query language rather
than designing a new language. They decided against this alter-
native because of the large implementation burden on user agent
implementors and the mismatch for XML processing [8]. How-
ever, they did speculate that the XML XQuery work may eventu-
ally result in a language suitable for encoding and processing P3P
preferences. The APPEL designers also considered the possibility
of using database query languages [8]. Our work completes this
thought by proposing XPref based on XPath and showing that it
serves nicely as a preference language for P3P.

Independent of our work, it has been noted in [12] that construct-
ing preferences in APPEL is complex and error prone. They spec-
ulate that XPath might be an alternative.

There have been efforts to develop graphical tools to simplify
preference creation. For example, the JRC APPEL Preference Ed-
itor [13] provides a Java-based GUI for preparing APPEL prefer-
ences. For developers of these tools, a symbolic language that is
small and not error prone (such as XPref) would help.

Current APPEL implementations include AT&T Privacy Bird
[15], which implements an APPEL engine in a browser extension
to Internet Explorer 5. There is also a Java-based APPEL imple-
mentation available from JRC [13]. A server-centric architecture
for matching preferences against policies is presented in [4]. The
server-centric approach lays the groundwork for enforcing privacy
policies at the database level. XPref is agnostic to specific imple-
mentation architectures and can be used in client as well as server
centric architectures.

The context for the work presented in this paper is our effort to
design information systems that protect the privacy and ownership
of individual information while not impeding the flow of informa-
tion. Our other related papers include [1, 2, 3, 5, 11].

6. CONCLUSION
The raison d’̂etre of P3P is to provide automated matching of

user preferences with privacy policies; thus its success depends on
the availability of an associated preference language. While AP-
PEL was designed for that purpose, subtle interactions between
APPEL and P3P lead to serious problems:

• Users cannot directly specify what is acceptable in a policy,
only what is unacceptable. The resulting specifications are
convoluted and verbose.

• Simple preferences are surprisingly hard to express.

• Writing APPEL preferences is error prone.

These shortcomings are symptoms of a fundamental problem with
the design of APPEL: only allowing logical operations at nodes

corresponding to P3P elements. This design choice cannot be
changed without a complete redesign of the language.

Therefore we explored alternatives to APPEL, and in particular,
showed that XPath serves quite nicely as a preference language. It
solves all the problems mentioned above. We identified the mini-
mal subset of XPath that is needed, thus allowing a matching en-
gine to potentially use a smaller memory footprint. We also gave
an XPref to APPEL translator, showing that XPath is as expressive
as APPEL.

We conclude by mentioning two interesting future directions for
extending XPref. First, how do we specify a preference such that
different websites can be automatically ranked with respect to their
privacy friendliness? Second, there is recent work on quantifying
the value of privacy by formulating the problem as a coalitional
game [14]. How can we extend the preference language to incor-
porate such negotiations?

7. REFERENCES
[1] R. Agrawal, A. Evfimievski, and R. Srikant. Information

sharing across private databases. InProc. of the 2003 ACM
SIGMOD Int’l Conf. on Management of Data, San Diego,
CA, June 2003.

[2] R. Agrawal and J. Kiernan. Watermarking relational
databases. InProc. of the 28th Int’l Conference on Very
Large Databases, Hong Kong, China, August 2002.

[3] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic
databases. InProc. of the 28th Int’l Conference on Very
Large Databases, Hong Kong, China, August 2002.

[4] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Implementing
P3P using database technology. InProc. of the 19th Int’l
Conference on Data Engineering, Bangalore, India, March
2003.

[5] R. Agrawal and R. Srikant. Privacy preserving data mining.
In ACM SIGMOD Conference on Management of Data,
pages 439–450, Dallas, Texas, May 2000.

[6] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez,
M. Kay, J. Robie, and J. Simeon, editors.XML Path
Language (XPath) 2.0. W3C Working Draft, August 2002.

[7] J. Clark and S. DeRose, editors.XML Path Language (XPath)
Version 1.0. W3C Recommendation, November 1999.

[8] L. Cranor.Web Privacy with P3P. O’Reilly&Associates,
September 2002.

[9] L. Cranor, M. Langheinrich, and M. Marchiori.A P3P
Preference Exchange Language 1.0 (APPEL1.0). W3C
Working Draft, April 2002.

[10] L. Cranor, M. Langheinrich, M. Marchiori,
M. Presler-Marshall, and J. Reagle.The Platform for Privacy
Preferences 1.0 (P3P1.0) Specification. W3C
Recommendation, April 2002.

[11] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke.
Privacy preserving mining of association rules. InProc. of
the 8th ACM SIGKDD Int’l Conference on Knowledge
Discovery and Data Mining, Edmonton, Canada, July 2002.

[12] G. Hogben. A technical analysis of problems with P3P 1.0
and possible solutions. InPosition paper, W3C Workshop on
the Future of P3P, Dulles, Virginia USA, November 2002.

[13] JRC P3P Resource Centre. http://p3p.jrc.it.
[14] J. Kleinberg, C. H. Papadimitriou, and P. Raghavan. On the

value of private information. InProc. 8th Conf. on
Theoretical Aspects of Rationality and Knowledge (TARK),
2001.

[15] AT&T privacy bird. http://privacybird.com.

[16] The World Wide Web Consortium.Extensible Markup
Language (XML). http://www.w3.org/XML.

APPENDIX

A. OVERVIEW OF XPATH
XPath was designed to match the structure of an XML document

against a compact path notation used for navigating through the
hierarchical structure of an XML document.

An XPath path expression, when applied to a document, returns
a sequence of distinct nodes in document order. There are seven
different types of nodes in an XML document: root nodes, element
nodes, text nodes, attribute nodes, namespace nodes, processing
instruction nodes, and comment nodes. A path is made up of steps,
each step is an expression that returns nodes. Each step navigates
the document from the context node along an axis defined by the
step. The context node is an implicit variable used to represent a
node in the XML document while processing an XPath.

XPath axes are used to navigate the structure of an XML docu-
ment in all directions. Given a context noden which is an element
node, the child axis, for example, navigates towards the subele-
ments or attributes ofn, while the parent axis moves in the direction
of the immediate element node that containsn. By default, each
step is along the child axis. Thus, the path /POLICY/STATEMENT
returns a sequence of distinct STATEMENT nodes in document or-
der. It retrieves, starting from the root node of the document, ele-
ment nodes having element name POLICY, and passed each node
n thus found onto the next step in the path. For the following step,
n is called the context node for evaluating the step. The STATE-
MENT node selects subelements of POLICY which have the el-
ement name STATEMENT and returns these as the result of the
path.

Predicates can also be specified at each step in the path in or-
der to restrict the set of nodes derived at a step. Predicates are
specified using square brackets and appear after the step. If a pred-
icate evaluates to a numeric value instead of a boolean value, the
result is converted to true if the number is equal to the context po-
sition. For example /POLICY/STATEMENT[3] selects only the
third statement in a policy. This is equivalent to the boolean pred-
icate /POLICY/STATEMENT[position() = 3] which uses the posi-
tion function that returns the context position.

Attribute nodes are accessed using the abbreviated syntax “@name”.
For example, current/@require selects therequiredattribute of the
current element. The @ prefix differentiates an attribute nodes
from other types of nodes.

B. CHOICE OF SUBSET OF XPATH 1.0
The following is a summary of the features of XPath 1.0 included

in XPref and the rationale for our choices:

• Axes: XPath defines 13 axes that can be used to traverse the
nested structure of an XML document. In XPref, the axes
required to specify preferences are limited to: child, parent,
attribute, self.
We have chosen to include a limited number of axes since
the schema of P3P XML policies is fixed and known; axes
such asdescendantanddescendant-or-self(represented with
// when using abbreviated XPath syntax) allow finding an el-
ement within the nested structure of an XML document with-
out knowing the full path to that element. For example, the
XPath //name(.) = “telemarketing” tests for the presence of an
element node calledtelemarketingcontained in a P3P policy.
While this adds some convenience, the task of evaluating such

a predicate would incur a performance penalty since the pred-
icate would have to be evaluated for all nodes in the XML
tree, instead of simply at those nodes that are children of a
PURPOSE node.

• Predicates: Boolean predicates are needed but positional pred-
icates are not necessary.
Our motivation for excluding positional predicates is that pri-
vacy preferences address whether a policy contains specific
sets of elements, irrespective of their relative position in the
XML document.

• Expressions: Relational operators{<, >,≤,≥} are not re-
quired. Similarly, arithmetic operators can be omitted.
Our motivation for excluding these operators is similar to our
motivation for excluding positional predicates; preferences
address whether a policy contains specific sets of elements.

• Functions: Only a limited number of functions are needed.
Math functions such asceiling, roundare not required.
We kept XPath string functions that provide services similar
to the wildcard “*” operator found in APPEL, which is used,
for example, when matching P3P data types in preferences.

Altogether, our reduced XPath BNF has 29 productions (26 pro-
ductions are taken from XPath 1.0 and 3 productions are taken from
XPath 2.0) while XPath 1.0 has a total of 39 productions. XPath
1.0 has a set of 27 core functions, and we retain only eight of
them. More importantly, we have omitted some of the more com-
plex constructs of XPath 1.0. These simplifications should result in
a smaller footprint implementation when compared to a full XPath
implementation.

C. BNF SPECIFICATION OF XPref
XPref replaces APPEL’s rule body with XPath specifications, but

retains the portion of APPEL used for specifying the behavior of
the rules and the ruleset. It uses a subset of XPath 1.0 functionality
and functions, and additionally borrows theeveryexpression from
XPath 2.0. Accordingly, we give the BNF for XPref in four pieces:

1. Figure 14 gives the BNF for the subset of XPATH 1.0 used in
XPref.

2. Figure 15 gives the XPath 1.0 functions included in XPref.
3. Figure 16 gives the subset of XPath 2.0 borrowed in XPref.
4. Figure 17 gives the portion of APPEL retained in XPref.

LocationPath ::= RelativeLocationPath
| AbsoluteLocationPath

AbsoluteLocationPath ::= ’/’ RelativeLocationPath?

RelativeLocationPath ::= Step
| RelativeLocationPath ’/’ Step

Step ::= AxisSpecifier NodeTest Predicate*
| AbbreviatedStep

AxisSpecifier ::= AxisName ’::’
| AbbreviatedAxisSpecifier

AxisName ::= ’attribute’| ’child’ | ’parent’ | ’self’

NodeTest ::= NameTest| ’node’ ’(’ ’)’

Predicate ::= ’[’ PredicateExpr ’]’

PredicateExpr ::= Expr

AbbreviatedStep ::= ’.’| ’..’

AbbreviatedAxisSpecifier ::= ’@’?

Expr ::= OrExpr

OrExpr ::= AndExpr| OrExpr ’or’ AndExpr

AndExpr ::= EqualityExpr| AndExpr ’and’ EqualityExpr

EqualityExpr ::= PathExpr
| EqualityExpr ’=’ PathExpr
| EqualityExpr ’!=’ PathExpr

PathExpr ::= LocationPath
| FilterExpr

| FilterExpr ’/’ RelativeLocationPath

FilterExpr ::= PrimaryExpr| FilterExpr Predicate

PrimaryExpr ::= VariableReference| ’(’ Expr ’)’
| Literal | Number| FunctionCall

FunctionCall ::=
FunctionName ’(’ (Argument (’,’ Argument)*)? ’)’

Argument ::= Expr

Literal ::= ’ " ’ [ˆ "]* ’ " ’ | " ’ " [ˆ ’]* " ’ "

Number ::= Digits (’.’ Digits?)?| ’.’ Digits

Digits ::= [0-9]+

FunctionName ::= QName

VariableReference ::= ’$’ QName

NameTest ::= ’*’| NCName ’:’ ’*’ | QName

Figure 14: Subset of XPath 1.0 used in XPref

Core Functions:
string local-name(node-set?)
string name(node-set?)

String Functions:
boolean starts-with(string, string)
boolean contains(string, string)
string substring(string, number, number?)

Boolean Functions:
boolean not(boolean)
boolean true()
boolean false()

Figure 15: Subset of XPath functions included in XPref

AndExpr ::= EqualityExprOrQuantifiedExpr
| AndExpr ’and’ EqualityExprOrQuantifiedExpr

EqualityExprOrQuantifiedExpr ::= EqualityExpr| QuantifiedExpr

QuantifiedExpr ::=
(’every’ VariableReference ’in’ Expr

(’,’ VariableReference ’in’ Expr)* ’satisfies’)* Expr

Figure 16: Quantified expression from XPath 2.0 used in XPref

ruleset ::= ’<appel:RULESET
xmlns:appel=" http://www.w3.org/2002/04/APPELv2" ’
common-attributes ’>’
rseq
’</appel:RULESET>’

rseq ::= 1*rule

rule ::= ’<appel:RULE behavior=" ’ behavior ’" ’
common-attributes
rule-attributes ’>’
[request-group]
’</appel:RULE>’

common-attributes ::= [’ crtdby=’ quoted-string]
[’ crtdon=" ’ datetime ’" ’]
[’ description=’ quoted-string]

rule-attributes ::= [’ prompt =" ’ (’yes’—’no’) ’ " ’]
[’ persona=’ quoted-string]
[’ promptmsg=’ quoted-string]
[’ condition=’ quoted-string]

behavior ::= ’request’| ’block’ | ’limited’

request-group ::= ’<appel:REQUEST-GROUP>’
1*request
’</appel:REQUEST-GROUP>’

request ::= ’<appel:REQUEST uri=" ’ [URI] per RFC 2396’" >’

quoted-string ::= ’" ’ string ’ " ’

string ::=<[UTF-8] string (with" and & escaped)>

datetime ::=<date/time as per ISO8601 or sec. 3.3.1 in RFC2616>

Figure 17: Portion of APPEL used in XPref

