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ABSTRACT ¢ CMOS for optimum speed/power
A large fraction of the useful web comprises of specification docu- e High speed
ments that largely consist ¢attribute name, numeric valbgairs — 18 ns address set-up
embedded in text. Examples include product information, classi- — 12 ns clock to output

fied advertisements, resumes, etc. The approach taken in the past
to search these documents by first establishing correspondences be-
tween values and their names has achieved limited success because
of the difficulty of extracting this information from free text. We
propose a new approach that does not require this correspondenc
to be accurately established. Provided the data has “low reflectiv-
ity”, we can do effective search even if the values in the data have
not been assigned attribute names and the user has omitted attribute
names in the query. We give algorithms and indexing structures for . .
implementing the search. We also show how hints (i.e., imprecise, to ask a query that looks something like this:

. . . - address set-up speed 20 ns power 500 mW CMOS PROM
partial correspondences) from automatic data extractlontechnlquesand et the CY7C225A data sheet. None of the search endines
can be incorporated into our approach for better accuracy on high 9 : 9

reflectivity datasets. Finally, we validate our approach by showing \i\c/);i/(\j/eﬂrgdamg tgatzf?heee;;ts:sghgh; \?v?wcé\;nevfeuegv(izregstr\]/:gig%?z)ﬁ-
that we get high precision in our answers on real datasets froma_ - . 9 We p
variety of domains. meric values for the speed and power attributes because the search

engines could then match the string. It is unreasonable to expect
that the user will provide exact numeric values when doing such

¢ Low power
— 495 mW (commercial)
— 660 mW (military)

Eigure 1: Specifications for Cypress CY7C225A PROM
(Www.cypress.com/cypress/prodgate/prom/cy7c225a.html)

Categories and Subject Descriptors searches. In fact, users typically search for items whose specifica-
H.3.3 Information Systems): Information Search and Retrieval tions roughly match the values provided in the query.
The approach taken in the past to retrieve the specification doc-
General Terms uments has been to extract the attribute-value p_airs contained in a
document and store them in a database. Queries can now be an-
Theory, Algorithms, Experimentation swered using nearest neighbor techniques [1] [15] [21]. There has
been some research on automating the task of data extraction (see
1. INTRODUCTION surveysin [7] [19]). However, the automatic extraction of attribute-
value pairs has a spotty record of success. It is a hard problem,
'0 dear ophelia, | am ill at these numbergmlet: 11, ii exacerbated by the fact that it is often difficult to identify attribute

names and establish correspondence between an attribute name and
Numbers play a central role in modern life. Yet the current search its value. Very often, different documents refer to the same attribute
engines treat numbers as strings, ignoring their numeric values.by different names. We experienced first-hand this problem in
For example, as of this writing, the search for 6798.32 on Google building an experimental portal for electronic components, called
yielded two pages that correctly associate this number with the Pangea. For semiconductor components alone, we obtained more
lunar nutation cycle [18]. However, the search for 6798.320 on than 200,000 datasheets from nearly 1000 manufacturers. Our ef-
Google found no page. The search for 6798.320 on AltaVista, fort to extract parametric information from these datasheets met
AOL, HotBot’ LyCOS, MSN, Netscape, oVerture’ and Yahoo! also with Only limited success. It is nOteWOIThy that the major content

did not find any page about the lunar nutation cycle. companies in electronics industry employ a large number of people
A large fraction of the useful web comprises of what can be Who manually extract the parametric information. o
called specification documentsThey largely consist of attribute- This paper proposes a new approach to retrieving specification

value pairs surrounded with text. Examples of such documents in- documents. In essence, we are suggesting that it is not neces-
clude product information, classified advertisements, resumes, etcsary to establish exact correspondences between attribute names
For instance, Figure 1 shows a partial extract of the data sheet forand numeric values in the data. An user query can instead choose
the Cypress CY7C225A PROM. A design engineer should be able to provide only values, without specifying corresponding attribute
Copyrightis held by the author/owner(s). names. For this gpproac_h to work, data must Havereflectiv-
WWW2002May 7-11, 2002, Honolulu, Hawaii, USA. ity. This property is exhibited py_many real world datasets and the
ACM 1-58113-449-5/02/0005. extent to which a dataset satisfies this property can be computed



independent of the query distribution. For a simple example of a H; # H;, since more than one attribute name can have the same
non-reflective dataset, assume that the documents contain only twanumeric value. An attribute may have a set of values (e.qg., different
attributes: ‘memory’ and ‘disk-size’. Further assume that the range processor speeds in the same datasheet) and hence it is also pos-
of values for memory is 64 to 512 and that for disk-size is 10 to 40. sible to haveH; = H; butn; # n,. Duplicates¢:. = n; and

Given a quen{20, 128, the system can correctly retrieve docu- H; = H;) may optionally be admitted by treatirg as a multi-set.
ments that have disk-size and memory values close to 20 and 128 If the document does not have hints associated with numbers,
respectively. In this example, the attributes have non-overlapping is simply a multi-set:

domains. However, low reflectivity is not limited to data having .
such non-overlapping attributes. If memory and disk-size over- D={ni|nieN,1<i<m} 2)
lapped, but were correlated such that high memory configurations A gearch queng consists of

had high disk-size, the data would still have low reflectivity.

The target repositories for our techniques are document collec- Q={{g,4)|geN A CAL<Li<k} ?3)
tions on focused topics. Classification and clustering techniques
can often be applied to partition a general repository into a set of
topic-specific repositories. Our techniques can also be applied in

other applications where providing attribute names in a query is dif- . ¢ atirib ith ber si h
ficult or inconvenient. For example, in a federated database systemtO assoclate a set of attribute names with a number since there may

the same attribute might be called with different names in different be Synonyms. 'I_'here is an implied conjunction between the query
constituent databases [8] [16] [17]. terms. Itis possible to havg = ¢; but A; # A;, i.e., aquery may
The techniques we propose complement current search technol-colrf“iIn more tgan one ohccurrr?nce of the_sarge U‘;}mﬁe“
ogy. One can envision a system in which the ranked results pro- . _t el queryl 0€s .not ave hints associated with the numgers,
duced using our techniques are combined with the results obtainedS S'MPlY & multi-set:
using words and links in the pages [2] [3] [9] [22]. Techniques such Q=A{a|a e N,1<i<k} 4
as [10] can be used for combining the results. -
The rest of the paper is organized as follows. Section 2 provides 2 2 Matching Without Attribute Names
the data and query models. We discuss reflectivity in Section 3. We . -
. S : - : The goalfor any search s to return documents that are most simi-
present algorithms for finding matching documents without hints R
lar to the query, ordered by their similarity score. The real problem

in Sections 4, and with hints in 5. Section 6 gives experimental .~ " L L .
results showing the accuracy and performance characteristics ofourIIes in defining similarity. The generally accepted approach is to

techniques. We conclude with a summary and directions for future ->c somé, norm as the measure of distance and take similarity to
work ir? Sec.tion 7 Y be inverse of this distance.

Consider a query system where attribute names are not available
in either the data or in the query. For a qu€ly= {q1,..., gz},
2. MODEL there must be a true attribute that the user has in mind correspond-
We assume that a document is preprocessed to extract number§d to each numbey; in Q. Similarly, for a documend = {n,
appearing in it. For each number, the potential attribute names are- - - » =}, €ach numben; in D has a corresponding true attribute.
optionally extracted by examining the text surrounding the num-  We call a documenD a true close matcho a query@ if D

Here eachinumberattribute naméspair represents a query term
andk is the number of query terms presentn A; is the set of
attribute names associated with the numperWe allow the user

ber! This extraction need not be precise. One may associate zerocontains a set ok numbersD’ = {n;,, ... ,n;,} such that the
or multiple attribute names with a number depending on the confi- distance betwee@ andD" is small (i.e., less than some constant
dence on the quality of extraction. r) and bothg; andr;, are the values of the same true attribute. We

To s|mp||fy expoﬁion’ we will |n|t|a||y ignore units norma”y have treated bot@ andD as ordered sets in this definition.
associated with numeric values. In Section 5.2, we discuss the han- We call a documenD a nameless close match a queryQ if
dling of units within our framework. D contains a set ok numbersD’ = {n,,,...,n;, } such that

At the time of querying, the user may simply provide numbers, the distance betweaf} andD’ is small. Unlike the case of a true
or optionally specify attribute names with numbers. The attribute close match, the true attributes correspondingfoandg; need
names provided in a query may not correspond to what are presenfl0t be the same. Notice that by requiring a sekafumbers in
in the data since the same attribute may be called with multiple £, we impose the desired constraint that a number instance in the
names, e.g., salary, income, pay, etc. We consider nearest neighbgdocument should not match fitiple query terms.
queries where the user is interested in retrieving thettdpcu-

ments containing values close to the query terms. CONJECTUREL  (REALISTIC QUERY). For mostqueries asked
] by users, there exists a documénht D that is a true close match
2.1 Database and Queries to the query.

Let\ be the universe of numbers addhe universe of attribute

names. The databaBeconsists of a set of documents. Adocument N other words, users do not ask queries by combining attribute
D e Dis defined to be values at random, but rather tend to combine them in “realistic”

ways.
D ={{ni,Hi)|ni € N, H; C A, 1 <3< m} @)

CONJECTURE2 (IMPLICIT NAME MATCH). In domainswhere
the Realistic Query conjecture holds, if a documBnis a hame-
less close match to a que, it is likely that thatD is also a true
close match ta.

where H; is the set of attribute names (hints) associated with the
numbem; andm is the number of uniquénumber attribute namés
pairs presentirD. Note that it is possible to hawe; = n; but

! The specific extraction techniques used are not of concern in this )
paper. One could, for example, use a regular expression based ex- Informally, if we get a good match on the numbers between a
tractor [5]. document and query, then it is likely that we will have correctly



(a) Non-reflective (b) Low Reflectivity (c) Low Reflectivity (d) High Reflectivity
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Figure 2: Examples of Non-reflective and Reflective Data
matched the attributes as well. Thus for datasets where this con- viewpoint. For a given querg), we consider how many
jecture holds, we can match using only the numbers, and still get reflections of other points are within distanceof @ and
good accuracy compared to the benchmark where we know the true compare this number with the number of points that are truly
attributes in both the documents and the query. within distance- of Q.

In Section 3, we define a property calleflectivitythat allows o
us to quantify the extent to which this conjecture holds in a given 3.1  Definition
dataset. In fact, if the query distribution for some set of true at-  Let D be a set ofn-dimensional points of cardinaliyD|. Let
tributes is the same as the data distribution projected onto that sub+:; denote the co-ordinates of poinat. We first define reflectivity
space, the likelihood in the above conjecture is the same as thegver the full m-dimensional space, and then give a more general

value of non-reflectivity. definition for subspaces.
We define thereflectionsof the pointz; to be the set of co-
3. REFLECTIVITY ordinates obtained by permutirg (includingrz;). For example, if

Consider the data shown in Figure 2(a) for two attributeand z; were(1, 2), the reflections of; would be{(1,2),(2, 1)}.
as. The diamonds indicate the points actually present in the data. L€t #(r) denote the number of points within distancef r;
This data is completely non-reflective: for any ot =n., az = (in m-dimensional ;space). The value ofis so chosen that the
n,) present in the data, its reflectiga; = n;, a> = n;) does not average value of(n;) (over e_lllxi € D) is cIo_se to the number
exist. Figure 2(b) gives an example of clustered data that is almostf toP answers that users will be interested in. het:) denote
completely non-reflective. The correlated datain Figure 2(c) is also te number of points ifD that have at least one reflection within
largely non-reflective. However, the data in Figure 2(d) is highly distancer of ;. The reflectivity ofD in m-dimensional space is

reflective. then defined to be:
The implication of reflectivity is that the queries against a low re- . S 8(n3)
flectivity data can be answered accurately without knowing the at- Reflectivitm, r) = 1 |D| XG:D p(m) ®)

tribute names, provided the realistic query conjecture is true. Hence,
although there is complete overlap between the range of values Now consider &-dimensional subspacg of the space ofD.

of the two attributes in Figures 2(a)-(c), we will get higlacu- We define thek-reflections of a point; in D to be the set of
racy on any 2-dimensional query. For example, consider the query co-ordinates obtained by considering #lepermutations of*Cj,
(20, 30) on the data in Figure 2(a). This query can only map to combinations ok co-ordinates chosen frorl. For example, the
(a1 = 30, a; = 20) since there are no points in the region around 2-reflections of a 3-dimensional poift, 2, 3) will be the se{(1, 2),
{a; =20, az = 30). (2,1),(2,3),(3,2),(1,3), 3, 1)}

Queries will often span a subset of the dimensions in the dataset, Letn{ represent the co-ordinates of pointprojected onto this
and reflectivity will depend on the exact set of dimensions being subspace. Let(S, n?) denote the number of points i whose
considered. Consider the que30) on the data in Figure 2(a).  projections onto the subspaSeare within distance of the co-
This query can map to eithén; = 20) or {a> = 20), and the ordinates:? (in the k-dimensional space). As before, the value of
answer to this query will consist of points for which eitlagror a. 7 is so chosen that the average valué @, n';s) (over allz; € D)
is close to 20. Thus precision on this query will be around 50%, in js close to the number of desired top answers. that(6t n?)
contrast to the close to 100% precision that we can get on the querygenote the number of points  that have at least oriereflection
(20, 30) for the same dataset. Similar behavior is exhibited by data within distance: of the co-ordinates? (in thek-dimensional space).

in Figures 2(b)-(c): they are hightyon-reflective in 2 dimensions,  The reflectivity of the subspacis defined to be:
but quite reflective in either of the 1-dimensional projections.

Before formally defining reflectivity, we make the following ob- Reflectivity$, ) = 1— 1 Z 8(8,n3) 6)

servations. 1P| “=p p(S,n%)
¢ Above, we took a given quei and checked whether or not ) ~ . )
the reflections o) coincided with other data points. How- Finally, letS, represent the set & dimensional subspacesbf

ever, for similarity queries, we care not only about the exact Let|Sx| = ™Cx denote the number df-dimensional subspaces
query values, but points close to the query values. Hence we Then, the reflectivity o> overk-dimensional subspacesis defined

should look at the number of points within distamoef each to be the average of the reflectivity in each subspace:
reflection of@. . 1 .
Reflectivityk,r) = —— Z Reflectivity(.S, ) 7)

¢ Ratherthan taking a query and considering whether there are |5k >
points close to the reflections of the query, we take a dual SESk



Note that: (a) Clustered & Reflective (b) Correlated & Reflective
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close matches @, andp( S, Q) documentsthat are nameless close

matches t@). Hence for this query, the probability thata document ' £iq e 3. Counter-examples showing clustered and correlated
that is a nameless close match will also be a true close match is ;
; 2 2 datasets that are reflective.
simply8(S, @)/p(S, Q).
Let us represent a query distribution for a subspfaby a ran-

dom sample of querie@ = {Q:, ..., @~} drawn from that dis- 2. Clustering and Correlation:For a fixed amount of overlap
tribution. Then for a query belonging to this distribution, the prob- between attributes, clustered and/or correlated datasets are
ability that a document that is a nameless close match will also be likely to have lower reflectivity than datasets where the at-
a true close match is tributes are independent. Figures 2(b) and (c) support this
. intuition. In Section 6.5, we quantify this effect for nine real-
1 (S, @) world datasets by computing reflectivity both for the origi-
|2 g.co P(S, Q) nal dataset and for a modified dataset where we destroy any
’ correlation or clustering while keeping the actual values of
Finally, if the query distribution for a subspa8és close to the each attribute fixed. Destroying correlation and clustering
distribution of documents projected onfo we can treat the set of increases reflectivity in all nine datasets, often dramatically.
points as a sample of the query distribution, and the probability that Of course, it is easy to come up with counter-examples of
a document that is a nameless close match will also be a true close correlated or clustered datasets that are quite reflective, as
match is simply Non-reflectivity, »). Thus reflectivity can serve shown in Figure 3.
as a close proxy for expected accuracy.
3.3 Computing Reflectivity 4. ALGORITHMS

If the database knows the correct attribute names corresponding We now give algorithms for finding documents in response to
to data values, we can use Eq. 7 to compute reflectivity. Null val- a user query. These algorithms assume th_at the (_jatabase as well
ues in the data can be handled as follows. Suppose the values ofS queries have no attribute names associated with the numbers.

some of the co-ordinates of an-dimensional pointz; are null Section 5 discusses how to take advantage of this extra information.
(unknown). We ignore this point in the computation of reflectivity Recall that a documerd® consists ofD = {n;|n; € N,1 <
in Eqg. 5. When computing the reflectivity of a subsp&da Eq. 6, i < m} (EQ. 2). A search querg) consists of@ = {g:|g: €

the termd (.S, n_:f)/p(S, n_:f) for pointz; is excluded from the sum- A, 1 <1 < k} (Eq. 4). Note that bot_hl_) andQ are multi-sets.
mation if a null value is present in the set of co-ordinates projected Each value corresponds to an unspecified attribute name.

onto S. However,z; may still contribute to the denominator of In computing the distance of que€y from a documenD, each
the above term for some other pointif a k-reflection ofz,; does g value is matched with exactly omevalue. Given a set of query
not have any null co-ordinate values and this reflection is within numbersg:, ... ,qx and a set of matching document numbers
distancer of n®. nj., ... ,n;,, the distance functiod with the L, norm (L < p <

The cost of computing reflectivity can be reduced by doing the oo) is defined as
summation in Eq. 6 for a sample of data points. Similarly, we can ' /p
do summation over a sample of subspacesin Eq. 7. k »
Consider now the scenario where attribute names have not been F(Q D)= (Z w(gi, nj,) ) ©)
assigned to most of the values in the documents. If we can get =t
hints for the attribute name, we can treat the highest-ranked hint wherew(gs, ny,) is the distance betweep andn;,. We expect
for each number as the attribute name and compute reflectivity. We tnat 7 will typically use relative distance, since otherwise some of
empirically evaluate this idea in Section 6.6. Our results show that qyery terms will get disproportionate importance and other query
this idea tends to be useful if the accuracy of hints is relatively high. terms will be ignored. For exampley(g:, n;) may be defined as
Finally, consider the situation in which we do noteven have good |4, — p|/|g; + €|

hints. The proposed techniques may work well; we just will not Maximizing similarity is equivalent to minimizing distance.
be able to estimate accuracy a priori. If the answers displayed to the

user show sufficient summary information that the user’s selections 4,1 Matching a Document to a Query
are a reliable indicator of the accuracy of the answer, we can use

L . o iven = f & numbers, an =
the precision of the answers as a rough estimate of reflectivity. {n? € isin%f m{ggcum;a?wkt}nzmbe?s t\:\?es\;vgn?ti ideliect the
3.4 Remarks numbersinD that will lead to the minimum distance. Each number

in D is allowed to match with a single number@h and vice versa.

. . ) Construct a weighted bipartite grapghas follows:
1. Non-overlapping Attributestf the attributes of a dataset do

notoverlap, such datais necessarily non-reflective for queries e Createk source vertices labeled, . . . , gx correspondingto
of any length. k numbers inQ.



Figure 4: Bipartite Graph

¢ Createm target vertices labeled, . .. , n,, corresponding
to m numbers inD. If m < k, addk — m target vertices
with valueco.

e From each source vertex, create an edge to tHeclosest
target vertices i{n1, . .. , nm }.2 Assign weightw(g:, n;)?
to the edgég:, n;).

Figure 4 shows the weighted bipartite graph@+{20,60 and
D={10,25,7§, assuming the distance function to e and
w(gi, ;) = g — n;|/g: + el
Lemma The optimum solution to the minimum weight bipartite
graph matching problem for the graghmatches each number in
@ with a distinct number irD such that we get the lowest value for
the distance scot®(Q, D).

We have marked in bold the edges comprising the optimum so-
lution for the graph in Figure 4. Thus, 20 ¢ is matched with 25
in D and 60 with 75 for a total distance score of 0.5.

We can now refer to the rich weighted bipartite graph matching
literature (see survey in [4]) to find the best matching between the

numbers in a query and the numbers in a document. We also obtain

the distance score at the same time, which is used for ranking the
documents. By repeating this process for every document in the
database, we have a solution to our problem. In Section 4.2, we
present techniques that avoid examining every document.

The best known algorithm for the weighted bipartite matching
problem is due to Feder and Motwani [13] and its time complex-
ity is O(e+/(k+m)log((k+m)*/e)/ log(k+m)), wheree is the
number of edges in the graph. Since= k%, the complexity is

O(K /T m) log((k+m) /&)  log(k-+m)).

4.2 Limiting the Set of Documents that are
Matched

We now address the question of how to limit the number of doc-
uments for which we have to compute the distance. This problem
turns out to be similar to that of retrieving the tbpbjects that have
highest combined score @nattributes, introduced in [11]. We first

describe the score aggregation problem and the threshold algorithm

for solving this problem [12] [14] [20].

Score Aggregation Problem Assumethat each objectin a database
hask scores, one for each éfattributes. For each attribute, there is
a sorted list, which lists each object and its score for that attribute,

sorted by score (highest score first). There is some monotone ag-

gregation functiorf for combining the individual scores to obtain
an overall score for an object. The problem is to efficiently find the
top ¢t objects that have the best overall score.

Threshold Algorithm (TA)  There are two modes of access to

data. Sorted access obtains the score of an object in one of the

sorted lists by proceeding through the list sequentially from the top.

Random access obtains the score of an objectin a listin one access.

The threshold algorithm works as follows [12].

2For a given source vertex, we only need to create edges tb the
closest targets, since the other- 1 source vertices can match at
mostk — 1 targets.

1. Do sorted accessin parallel to each ofktssrted listsL;. In
other words, access the top member of each of the lists under
sorted access, then the second member, and so on. As an
objectD is seenin some list, do random access to other lists
to find scores; of objectD in every listL;. Then compute
the overall scorgf (D) = f(s1, ..., sx) of objectD. If this
score is one of the highest we have seen, then remember
and its scoref (D).

. For each listZ;, let s, be the score of the last object seen
under sorted access. Define the threshold value be

f(s;,...,5s;,). Halt whent objects have been seen whose
overall score is at least equalto

. LetY be a set containing theobjects that have been seen
with the highest scores. The result is the graded set
{D,f(D))|DeY}.

Proposed Adaptation We now discuss how our problem is simi-
lar to the score aggregation problem. We then show how the thresh-
old algorithm can be adapted to our problem.

Assume that the documents have been processed to create data
structures to support the following types of accesses.

¢ Database Accesssiven a document id, return the multi-set
of numbers present in the document.

¢ Index AccessGiven a number, return the set of documents
in which this number is present. Only numbers that appear
in at least one document are included in this index. Numbers
are kept sorted so that it is easy to determine the nearest left
neighbor (smaller number) and nearest right neighbor (larger
number) of a number. We can use B-tree [6] for this purpose
if the index is too large to fitin memory.

Here is the algorithm, stated in the TA framework. While reading
the algorithm, keep in mind that a document with a lower distance
score is closer to the query, and hence better in our setting.

1. Formk conceptual lists, one for each query tegimas fol-
lows. For everyg;, create an ordered list of nhumbers
ni,nZ,... such thatw(g:, nl) < w(g, nf+1 ). (Recall that
w(g;, n?) is the distance between andn’.) Associate the
scores! = w(g:, n]) with every documentreturned by index
access om]. The listL; for g; is now defined to consist of
documents obtained from index look up on temmsn?, . . .
sorted in ascending value of score (lowest score first). Note
that these lists are not physically materialized, but the next()
operation on these lists is well-defined and can be efficiently
implemented using the index access described above.

. Do a round-robin access to each of thsorted listsL;. As
a documenD is seen in some list, do a database access for
this document and match it with the query using the algo-
rithm from Section 4.1. The distance score returned by the
matching algorithm gives the overall score of the document.

. Letn, be the number in the index that we last looked at for
query termy;. Define the threshold valueto be the distance

(32K, w(gi,n})P)*/? from Eq. 9. Halt whert documents

have been seen whose distance fi@nis less than or equal

tor.

At this point, for any document that has not been seen in the
index, the closest number to each query teggnmust be at
least as far frong; asn., and hence the distance between the
document and the query must be at least as high as

Note that unlike the original threshold algorithm, thescores
in the adaptation are lower bounds on the distance, not necessarily



the actual distance. In other words, when we match a doculent ing problem to weighted bipartite graph matching. The only differ-
to a query, the number that ends up being matchedgyithay be ence is that we now assign(g;, n;)? + B x v(A;, H;) as the
further away fromy; than indicated by the score féF in the sorted weight of the edgég;, n;).
list for g;. The reason is that during matching, a numbedin Limiting the Set of Matches The algorithm proposed in Sec-
can only match one query term, but we do not track this constraint tion 4.2 can be used as is even in the presence of hints, since we
during index access (to avoid the bookkeeping overhead). Thus ifonly need thes! score to be a lower bound on the true distance.
a single number irD is the closest number to two different query Thatis. we car: use! = w(g;, n?) to create the sorted list; for
terms, one of the two scores f@ will be a lower bound for the T 2 WA T ¢

. ) . s, ignoring the match on attribute names.
actual distance. This does not affect the correctness of the halting However, the algorithm will be considerably more efficient if we

criteria in step 3, since the threshold valués a lower bound on modify it as follows. First, create an index to support anitaieal

s e oy e f sccessin ndex accesgen a numben ogeter i
an attribute name., return the set of documents in whiej is

present and the set of hints faf includesa;. The original index
5. USINGATTRIBUTENAMESANDUNITS can be (conceptually) treated as a special case of this index, where
. the attribute name; = ¢.
5.1 Attribute Names Now, in Step 1, for each query term, create an ordered list
We now describe how to use hints about attribute names to aid (ni, ai }, (n?,a?),... and associate the scasg = w(q;,n])? +
matching. Letf; denote the set of attribute names associated with B x v( A, {a? })? with the entry{n?, a?), such thas! < sf“. We
the numbem; in a document. As before, led; denote the set  can do this efficiently by using hint index access for each attribute
of attribute names associated wighin a query. We extend the  name in the set of hintd, associated with the query terg, and
distance function from Eq. 9 to incorporate hints as follows: also for the empty attribute nange Step 2 does not change. In
1p Step 3, thi only chan/ge is that WeAnozv g}efzintal}gef threshold value
Ttobe(d ,_, (w(g, n)? + B x v(A;, {a; rom Eq 10,
F(@ D)= (Z (w(gi,ns.)" + B x v(A;, Haz)p)> (10) Where(%:agi(is (the erztry in the iEldex that) v?ga last looked at for

=t query termy;.

k

The parameteB balances the importance between the match on .
the numbers and the match on the hints. In general, the higher the®-2 ~ UNIts
accuracy of the hints and the higher the reflectivity of the data, the If the unit names are available in addition to attribute names, we
higher should be the value &f. extend the distance function from Eq. 10 by adding a té&nx
Recall that the functionv(g:, n;) determines the distance be- (A}, H}.)? for whether the units match:
tween a query number and a document number. Analogously,
v(A:, H) is a function that determines the distance between the
set of attribute names associated with a query number and the set
of attribute names associated with a document number. We use the
following distance functiow in our experiments:

F(Q:'D) = (Z(w(qixnh)p—i_B X U(AilHJv.)p

=1

1/p
+ B* x u(A¥, H;t)p)> (12)

0 fANH; #£¢ AY denotes the set of unit names &gr H;* is the set of unit names
v(A;,Hj))=< 0 ifA, =¢ (11) for n;, andu( Ay, HY) is the distance function between the two
M i 7 3 7 A A ) A
1 otherwise sets of unit names. The functiaf A}, H;') is definedin a manner

similar tov(A;, H;). The parameteB* is analogous t® and can
be similarly computed.

An additional complication arises due to different units (e.g.,
MHz and GHz) being assigned to the values of the same attribute.
€n some cases, this problem can be approached by converting the

corresponding quadities into a ‘standard’ form.

This function penalizes a match onlygf andn; are likely to be-
long to different attributes. Hence if any of the attribute names in
the query matches any of the hints, or if there is no attribute name
specified in the query, the distance is zero. Otherwise, the distanc
is 1.

Our techniques are independent of the specific form of the func-
tion v. A more sophisticated function form tuned to the specific
data extractor being used (e.g., by incorporating belief values gen-6' EXPERIMENTS
erated by the data extractor) may yield better results. However, as In this section, we report the results of experiments we performed
we will see, our experiments indicate that even this simple function to study the accuracy and performance characteristics of the pro-
can be quite effective. posed techniques. We used synthetic as well as real datasets in this
study. Synthetic datasets are amenable to controlled experiments,

Determining the weight B A good value forB is important hWhiIe real datasets are good as a sanity check.

for successfully using hints. Suppose the website provides enoug
summary with each answer that the user is likely to click on rele- 6.1 Accuracy Metric

vant answers. By tracking user clicks, we can get a set of queries Given a databas® in which the correct correspondences be-
fo_r which we know the true answers with high probability. Treat_ tween the numbers and the attribute names are known, a query
this s_et asa tu_ne setand evaluate the p(_arformance of the matCh'“%g consisting of numbers and full information about the attribute
algorl_thm for different values oB. Then p'f:k th_e \_/alue that 9VeS hames corresponding to those numbers, we could generate the “per-
the hlghgst accuracy. If a set of values give similar accuracy, pick fect” answer of topt matching documentds(t) = {D,,, ... ,

the median value in the set. Note that the best valuB & likely D,,} for a given distance functio. If the information about

to be different for different query sizes, and hence we will need a the attribute name is not available or only partially available in the
ne set per query size. form of hints, we would generate a different set of topatching
Constructing the Bipartite Graph As before, we mapthe match-  documentsV{(¢) = {D1, ..., D:}.



Precision{) is defined to be the the percentage of documents in
Mp(¢) that are also present M (¢):

. |Mp(t) N M(t)|
Precisiofft) = ——————* x 100 (13)

) M)
We sett to 10 in our experiments, corresponding to the number
of hits typically displayed on the first page by search engines, and

refer to Precision(10) as simply Precision.

6.2 Datasets

6.2.1 Synthetic Data

A documentis modeled as a setafnumbers, corresponding to
m known attributes. We generated three types of synthetic data:

1. IndependentEach attribute is independent of the other at-
tributes.

2. Correlated Attribute a; 41 is correlated with attribute;.
3. Clustered Data is clustered around a few cluster centers.

We expect Independent to be more reflective, and Clustered and
Correlated to be less reflective. Therefore, we should get higher
precision on Clustered and Correlated, and lower precision on In-
dependent.

Figure 5 shows the pseudocode for generating the three types of
synthetic data. We usg] to control the amount of reflectivity.
The value ofs[4] is initially settoR x j, whereR is a parameter
that controls to the amount of overlap between the range of values
of various attributes, which in turn influences reflectivity. If we
wanted to generate a dataset with almost no overlap between any
of the attributes R would be set to a high value, e.g., 10. On the
other hand, if we wanted very high overlap between the attributes,
R would be setto 0. In our experiments, we manually tuRestich
that the 1-dimensional non-reflectivity is roughly 80% for each of
the three datasets (with the default number of attributes). The val-
ues ins[] are then randomly permuted, so that for the correlated
dataset there is no connection between which attributes are corre-
lated and which attributes are adjacentin terms of values.

Figure 6 shows the settings used in the synthetic data experi-
ments. The Range column gives the range of values used in various
experiments. The Default column provides the default value of the
corresponding parameter. Query size refers to the number of terms
in the query.

To generate a query of siZe we first pick a document at ran-
dom. Next, for Independent and Clustered, we randomly piak
tributes from the document, and for Correlated, we randomly pick a
set ofk consecutive attributes. We then remove this documentfrom
the dataset, and compute the precision. (If we keptthe documentin

/I N: number of documents

/I m: number of attributes

/I D;: ¢" document

Il D;(3): value of the attributg in documentD;
/I R: controls the amount of overlap

Il s[]: s[5] settoR x j and thens[] is permuted
/I Gauss(): Gaussian witla= 0 ande =1

Independent:

1) fore:=1toN

2) forj:=1tom

3) D;(j) := Gauss() + 9]

Correlated:
1) fore:=1toN

2) D;(1) := Gauss()

3) forj:=2tom

4) D;(7) == (Di(5 — 1) + Gauss())x 0.7
5) for 7 := 1 tom begin

6) D:(3) = D:(3) +slj]

Clustered:

/I C: number of clusters

1) forz:=1toC

2) forj:=1tom

3) D;(5) :== Gauss() + ]
4) fore:=C+1toN

5) cid:=¢modC) +1

6) forj:=1tom

7) D;(j5) = D¢jg(3) + 0.2 x Gauss()

Figure 5: Synthetic Data Generation

Parameter Default | Range
Number of Attributes+) 20 5to 50
Number of DocumentsY) | 10K 1K to 800K
Query Sizek) 5 1to 10
1-dim. non-reflectivity 80% 100% to 10%
Data Type Ind., Corr., Clust.

Figure 6: Parameters for Synthetic Data Experiments

the dataset, our scores would be artificially boosted.) We average
the results over 1000 queries for each combination of parameters
and query size. We usk; to compute distance between a query

and a document in all our experiments.

6.2.2 Real Data

Figure 7 gives information about the nine real datasets used in
our experiments. The first four datasets came from the Panged
data on electronic components for different categories of electronic
parts. The last five datasets are from the University of California—
Irvine Repository of Machine Learning. A record here corresponds
to a document.

Number Maximum Average
of Number of Number of]
Source Dataset Records Attributes  Attributes
Pangea DRAM 3,866 10 6.8
LCD 1,733 12 9.4
Microprocessorf 1,133 12 5.3
Transistor 22,273 24 13.3
UCI Automobile 205 16 15.7
Housing 506 14 14
Glass 214 10 10
Wine 179 14 14
Credit 666 6 6

The query generation procedure used with the real data is iden-
tical to the procedure we described for the Independent and Clus-
tered data. All results are the average of 1000 queries.

Figure 7: Real Datasets
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6.3 Relationship of Precision to Reflectivity C++, but the relative impact of various factors is likely to be the

Figure 8(a) shows the precision on the three synthetic datasets agame. Both index and documents were kept completely in memory,
the query size is increased. We compute answers to the same quer}imiting us to apund 800,000 documents. _ o
under two sttings: (i) attribute names are known for both data Figure 11 shows the execution times with and without |ndeX|n_g
and query, and (i) attribute names are ignored in data as well asfor the Independent, Correlated and Clustered datasets. The time
query. We then use Eq. 13 to compute precision. Figure 8(b) plots without indexing was almost identical for the th_ree d_atasets, and
non-reflectivity versus subspace dimensionality. Non-reflectivity is hence we only plot one curve, “Scan” for the no indexing case.
computed assuming attribute names are known in the data. Both _Figure 11(a) shows the execution time results for different query
precision and non-reflectivity have been plotted as a percentage Sizes for the three synthetic datasets. The index is quite effective
These figures show that precision at a given query size closely for smaller query sizes, which we expect to be the norm. For larger
tracks non-reflectivity for the corresponding subspace dimension- duery sizes, the dimensionality curse begins to catch up and using
ality. the index only does a little better than a full scan. _

As anticipated, both Clustered and Correlated gave higher preci-  Figure 11(b) shows the scalability of the indexing as we increase
sion than Independent. Clustered gave higher precision than Cor-the number of documents from 1000 to almostilliom. At query
related for higher query dimensions. To understand the behavior of Size 5, the number of documents matched goes up by a factor of
Clustered with increasing subspace dimensionalityall our ex- ~ @bout 250 times as we increase the number of documents by 800
ample from Figure 2(b). This dataset has very low reflectivity in times, and the number of index entries scanned goes up around 200
2 dimensions, but high reflectivity in one dimension. Similarly, in times. Hence while the fraction of the index scanned and the per-
our synthetic data, the clusters gradually merge as we drop dimen-centage of documents checked both decrease slightly, the absolute
sions, leading to an increase in reflectivity for lower dimensions. time goes up almost linearly with the number of documents. At
By the time we reach 2 dimensions, the clusters have completely 800,000 documents, we take slightly more than 1 second for query
disappeared and Clustered starts behaving like Correlated and InSize 5 and around 0.03 seconds for query size 2.
dependent. Figure 11(c) shows that the execution time remains flat as we in-

Figure 9(a) shows the precision as a function of the number of crease the number of attributes. In our synthetic datasets, adding

documents. Figure 10(a) shows the precision as a function of the "W attributes does not change the average amount of overlap be-
number of data attributes. We again note from corresponding (b) tween attributes. Hence the number of documents matched or index

figures that the precision closely tracks non-reflectivity. entries scanned s not affected by adding more attributes. However,

matching takes a littleonger, and hence the overall time goes up

. . slightly.

6.4 Effectiveness of Indexmg Figure 12 shows results on three of the real datasets. For DRAM,
We now study the effectiveness of indexing in limiting the setof there were often a large number of documents at a distance of zero

documents for which we have to compute the distance for a query. from the query for smaller query sizes. Hence whether we stop as

All our experiments were run on a 933 MHz Pentium Il with 512 soon as we get 10 documents with zero distance, or whether we get

MB of memory. The code was written in Java and run with Sun 3|l documents at zero distance (and then present a random sample),

JDK 1.3 Hotspot Server. The execution times will be faster with
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Figure 12: Effectiveness of Indexing on Real Data

makes a dramatic difference in the running time. The “All Closest” the real datasets and then augmenting them with hints. Our pro-
line shows the former case, and the “Any 10" line the latter. For the cedure for generating hints takes two parameters: AvgNumHints
other two datasets, this is not a significant issue, and hence theseand ProbTrue. AvgNumHints is the average number of hints per
two lines are very close to each other. Again, we can conclude thatdata value. Each data value is assigned at least one hint, hence the

indexing is quite effective for smaller query sizes. minimum value of AvgNumHints is 1. If AvgNumHints is greater
. than 1, then the number of hints for a specific data value is deter-
6.5 Precision on Real Data mined using a Poisson distribution. ProbTrue is the probability that

Figure 13 shows the precision and non-reflectivity as a percent- the set of hints for a data value includes the true attribute name.
age in the same graph for the nine real datasets. The x-axis forFigure 14 gives the pseudocode for generating hints for a given
precision and non-reflectivity is query size and subspace dimen-data value. In general, increasing AvgNumHints should result in
sionality respectively. We again see tman-reflectivity can pro- increasing ProbTrue. However, since the exact relationship is data
vide a good estimate of the expected precision. We also see thatand data extractor dependent, in any given experiment, we fix one
real datasets can be quite non-reflective and hence our techniquesf the values and vary the other. The query consists of numbers
can be effectively used on them. together with the corresponding true attribute name.

We synthesized nine datasets from the real datasets described
earlier, and experimented with all of them. However, we show the
graphs for only three representative datasets: DRAM, Auto and
Wine. DRAM and Auto have high non-reflectivity, and Wine lower
non-reflectivity.

Effect of Clustering and Correlation In Section 3, we stated our
intuition that clustering and correlation would typically increase
non-reflectivity. To verify this conjecture, we study the effect of
destroying any clustering or correlation effects in a dataset by ran-
domly permuting the values for every attribute. (We permute the
values of an attribute across documents, not across different at-Weighting the Match on Hints Figure 15 shows the effect of
tributes.) If the attributes were originally independent, this permu- changing the weight given to the match on the attribute names (the
tation will not affect reflectivity, since permutation does not affect parameteB in Eq. 10). AvgNumHints was set to 1, so that every
the distribution of values for each attribute. Hence the difference data value had exactly one hint assigned to it. The different curves
in non-reflectivity between the original data and the randomized show precision for different values of ProbTrue. If the hints are
data can be attributed to clustering and correlation. The line “Ran- accurate (high value of ProbTrue), then precision rapidly goes up
domized Non-Refl.” shows the non-reflectivity on the randomized with increasingB. For DRAM, the precision goes up for values of
datasets. For all but the Credit dataset, randomized non-reflectivity B much smaller than 0.01, and hence Figure 15(a) does not show

is substantially lower than non-reflectivity. this increase. For queries on DRAM, there are often different at-
. . . tributes with the same numeric value as the query value, and even
6.6 Using Attribute Names as Hints a small value off is sufficient to pick between them. If the hints

We generated data for this set of experiments by starting with are not very accurate, precision goes down with increa8in@ne
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Figure 13: Precision on Real Datasets

/I ProbTrue: Prob. of true attribute name being in the set of hints  (specifically, we used 0.01, 0.03, 0.1, 0.3, 1, 3, 1. We then

/I Rand(0,1): Uniform Random number between 0 and 1 choose the value that gives the highest precision. As we mentioned
n = 1 + Poisson(AvgNumHints-1) in Section 5, this method can be used as long as the Web§ite_ pro-
Ay = A — true attribute name V|de_s enough summary with each answer so that the user is likely
if (Rand(0,1)< ProbTrue) to click on relevant answers.
Output true attribute name amg-1 names randomly Effectiveness of Hints Figure 16 shows the gains in precision for
selected fromd ¢ different values of ProbTrue when AvgNumHints is setto 1. Notice
else that for datasets with high non-reflectivity (DRAM and Auto), the
Outputr attribute names randomly selected frotp hints have to be extremely accurate (ProbTsu@.9) to add signifi-
cantvalue. However, for datasets with low non-reflectivity (Wine),
Figure 14: Generating Hints even hints with lower levels of accuracy can increase precision.

Number of Hints  In the previous set of experiments, we found
should not conclude tha& should bex if hints are accurate and 0 that Pro_bTrue (the probability that_ the_set of_hints will inclu_d_e the
otherwise. For example, in the case of wine with ProbTrue betweentrue attrlbutt_a name) h?‘d to be quite high to increase precision. In
0.6 and 0.8, the precision initially goes up wighand then drops many doma_lns, suc_:h h'gh values of I_DrobTrue may not be achievable
back down. Therefore it is important to choose a good valug.of W.'thOl.Jt having mu_lple hints per attrlbut_e_, where _only one of the

In the rest of the experiments, we assume we have a tune set oih'nts Is correct. Figure 17. shows precision for different ve_llues of
100 queries (per query size) for which we know the best match. the average number of hints (AvgNumHints). For each line, we
We compute Precision over this tune set for different valueB of have fixed the value of ProbTrue.
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Figure 16: Effectiveness of Hints

As expected, for a fixed value of ProbTrue, precision decreasesonly sets of numbers in the search, ignoring any attribute names.
as the number of hints increases. However, we expect ProbTrueWe showed that matching a document with a query in this setting
to increase with the number of hints. Consider Figure 17(c), and corresponds to the weighted bifiter graph matching problem. We
assume we have a data extractor that gives ProbTrue of 0.7 wheralso showed how to limit the number of documents that we have to
AvgNumHints = 1, ProbTrue of 0.9 when AvgNumHints = 1.5, and match with a given query.

ProbTrue of 0.99 when AvgNumHinis 3. In this scenario, choos- We identified a data property, called reflectivity, that can tell a
ing AvgNumHints = 3 will result in the highest precision. Thus, priori how well our approach will work against a dataset. High non-
having multiple hints can improve precision if there isastom- reflectivity in data assures that our techniques will have high pre-
panying increase in ProbTrue. cision. Our experiments showed that real datasets can exhibit high

Estimating Reflectivity using Hints  Finally, we explore how non-reflectivity and_ our techni_ques yielded high precision against
well we can estimate non-reflectivity when we do not know true these datasets. Using synthetic data, we also showed the scalability

attributes but only have hints about them. We generate data with and resilience of our Fechniq_ues in terms_of the ”U”?bef of docu-
AvgNumHints = 1 and different values of ProbTrue, treat each hint MeNts, number of attributes in the data, size of queries, and types
as if it were the true attribute name, and compute reflectivity. Fig- ©f dat@.

ure 18 shows the results. The values on the y-axis, with ProbTrue :h' We al_so showed h.O\.N We can use imprecise attribute names as
1, are the true values of non-reflectivity. The non-reflectivity esti- NiNtS to improve precision. Hints are particularly helpful when the

mates are lower with hints than with true attribute names. However data has low non-reflectivity. However, for datasets with high non-

for small subspace dimensions, the drop-off is sufficiently gradualy r(_eflectlvny, hints have to be extremely accurate to improve preci-
that the estimate is still useful when the hints are reasonably ac-S'on beyond what we get by matchlng_number_s. N
curate. For larger subspace dimensions, the drop-off is sometimes _In the future, we plan to extend .th's. work_ in three directions.
quite steep. Hence if the estimate for non-reflectivity has a low I rSt: we would like to handle queries in which value ranges are
value, we cannot be sure that the true value of non-reflectivity is prowded._ Second, some extraction pr_ocedures associate confldgnce

values with the attribute names assigned to a number. We wish
to explore how to take advantage of this additional information.
Finally, we would like to better understand the interaction between
correlated and clustered data and reflectivity.
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