
Searching with Numbers

Rakesh Agrawal
IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120
ragrawal@us.ibm.com

Ramakrishnan Srikant
IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120
srikant@us.ibm.com

ABSTRACT
A large fraction of the useful web comprises of specification docu-
ments that largely consist ofhattribute name, numeric valuei pairs
embedded in text. Examples include product information, classi-
fied advertisements, resumes, etc. The approach taken in the past
to search these documents by first establishing correspondences be-
tween values and their names has achieved limited success because
of the difficulty of extracting this information from free text. We
propose a new approach that does not require this correspondence
to be accurately established. Provided the data has “low reflectiv-
ity”, we can do effective search even if the values in the data have
not been assigned attribute names and the user has omitted attribute
names in the query. We give algorithms and indexing structures for
implementing the search. We also show how hints (i.e., imprecise,
partial correspondences) from automatic data extraction techniques
can be incorporated into our approach for better accuracy on high
reflectivity datasets. Finally, we validate our approach by showing
that we get high precision in our answers on real datasets from a
variety of domains.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Retrieval

General Terms
Theory, Algorithms, Experimentation

1. INTRODUCTION

’o dear ophelia, I am ill at these numbers;Hamlet: II, ii

Numbers play a central role in modern life. Yet the current search
engines treat numbers as strings, ignoring their numeric values.
For example, as of this writing, the search for 6798.32 on Google
yielded two pages that correctly associate this number with the
lunar nutation cycle [18]. However, the search for 6798.320 on
Google found no page. The search for 6798.320 on AltaVista,
AOL, HotBot, Lycos, MSN, Netscape, Overture, and Yahoo! also
did not find any page about the lunar nutation cycle.

A large fraction of the useful web comprises of what can be
calledspecification documents. They largely consist of attribute-
value pairs surrounded with text. Examples of such documents in-
clude product information, classified advertisements, resumes, etc.
For instance, Figure 1 shows a partial extract of the data sheet for
the Cypress CY7C225A PROM. A design engineer should be able

Copyright is held by the author/owner(s).
WWW2002, May 7–11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

� CMOS for optimum speed/power
� High speed

– 18 ns address set-up
– 12 ns clock to output

� Low power
– 495 mW (commercial)
– 660 mW (military)

Figure 1: Specifications for Cypress CY7C225A PROM
(www.cypress.com/cypress/prodgate/prom/cy7c225a.html)

to ask a query that looks something like this:
address set-up speed 20 ns power 500 mW CMOS PROM

and get the CY7C225A data sheet. None of the search engines
could find this datasheet using the above query (or its variations).
We were able to get the data sheet when we provided the exact nu-
meric values for the speed and power attributes because the search
engines could then match the string. It is unreasonable to expect
that the user will provide exact numeric values when doing such
searches. In fact, users typically search for items whose specifica-
tions roughly match the values provided in the query.

The approach taken in the past to retrieve the specification doc-
uments has been to extract the attribute-value pairs contained in a
document and store them in a database. Queries can now be an-
swered using nearest neighbor techniques [1] [15] [21]. There has
been some research on automating the task of data extraction (see
surveys in [7] [19]). However, the automatic extraction of attribute-
value pairs has a spotty record of success. It is a hard problem,
exacerbated by the fact that it is often difficult to identify attribute
names and establish correspondencebetween an attribute name and
its value. Very often, different documents refer to the same attribute
by different names. We experienced first-hand this problem in
building an experimental portal for electronic components, called
Pangea. For semiconductor components alone, we obtained more
than 200,000 datasheets from nearly 1000 manufacturers. Our ef-
fort to extract parametric information from these datasheets met
with only limited success. It is noteworthy that the major content
companies in electronics industry employ a large number of people
who manually extract the parametric information.

This paper proposes a new approach to retrieving specification
documents. In essence, we are suggesting that it is not neces-
sary to establish exact correspondences between attribute names
and numeric values in the data. An user query can instead choose
to provide only values, without specifying corresponding attribute
names. For this approach to work, data must havelow reflectiv-
ity. This property is exhibited by many real world datasets and the
extent to which a dataset satisfies this property can be computed

independent of the query distribution. For a simple example of a
non-reflective dataset, assume that the documents contain only two
attributes: ‘memory’ and ‘disk-size’. Further assume that the range
of values for memory is 64 to 512 and that for disk-size is 10 to 40.
Given a queryf20, 128g, the system can correctly retrieve docu-
ments that have disk-size and memory values close to 20 and 128
respectively. In this example, the attributes have non-overlapping
domains. However, low reflectivity is not limited to data having
such non-overlapping attributes. If memory and disk-size over-
lapped, but were correlated such that high memory configurations
had high disk-size, the data would still have low reflectivity.

The target repositories for our techniques are document collec-
tions on focused topics. Classification and clustering techniques
can often be applied to partition a general repository into a set of
topic-specific repositories. Our techniques can also be applied in
other applications where providing attribute names in a query is dif-
ficult or inconvenient. For example, in a federated database system,
the same attribute might be called with different names in different
constituent databases [8] [16] [17].

The techniques we propose complement current search technol-
ogy. One can envision a system in which the ranked results pro-
duced using our techniques are combined with the results obtained
using words and links in the pages [2] [3] [9] [22]. Techniques such
as [10] can be used for combining the results.

The rest of the paper is organized as follows. Section 2 provides
the data and query models. We discuss reflectivity in Section 3. We
present algorithms for finding matching documents without hints
in Sections 4, and with hints in 5. Section 6 gives experimental
results showing the accuracy and performance characteristics of our
techniques. We conclude with a summary and directions for future
work in Section 7.

2. MODEL
We assume that a document is preprocessed to extract numbers

appearing in it. For each number, the potential attribute names are
optionally extracted by examining the text surrounding the num-
ber.1 This extraction need not be precise. One may associate zero
or multiple attribute names with a number depending on the confi-
dence on the quality of extraction.

To simplify exposition, we will initially i gnore units normally
associated with numeric values. In Section 5.2, we discuss the han-
dling of units within our framework.

At the time of querying, the user may simply provide numbers,
or optionally specify attribute names with numbers. The attribute
names provided in a query may not correspond to what are present
in the data since the same attribute may be called with multiple
names, e.g., salary, income, pay, etc. We consider nearest neighbor
queries where the user is interested in retrieving the topt docu-
ments containing values close to the query terms.

2.1 Database and Queries
LetN be the universe of numbers andA the universe of attribute

names. The databaseD consists of a set of documents. A document
D 2 D is defined to be

D = fhni;Hii jni 2 N ; Hi � A;1 � i �mg (1)

whereHi is the set of attribute names (hints) associated with the
numberni andm is the number of uniquehnumber;attribute namesi
pairs present inD. Note that it is possible to haveni = nj but

1The specific extraction techniques used are not of concern in this
paper. One could, for example, use a regular expression based ex-
tractor [5].

Hi 6= Hj, since more than one attribute name can have the same
numeric value. An attribute may have a set of values (e.g., different
processor speeds in the same datasheet) and hence it is also pos-
sible to haveHi = Hj but ni 6= nj . Duplicates (ni = nj and
Hi = Hj) may optionally be admitted by treatingD as a multi-set.

If the document does not have hints associated with numbers,D
is simply a multi-set:

D = fni jni 2 N ; 1 � i �mg (2)

A search queryQ consists of

Q = fhqi;Aii j qi 2 N ;Ai � A;1 � i � kg (3)

Here eachhnumber;attribute namesi pair represents a query term
andk is the number of query terms present inQ. Ai is the set of
attribute names associated with the numberqi. We allow the user
to associate a set of attribute names with a number since there may
be synonyms. There is an implied conjunction between the query
terms. It is possible to haveqi = qj butAi 6= Aj, i.e., a query may
contain more than one occurrence of the same number.

If the query does not have hints associated with the numbers,Q
is simply a multi-set:

Q = fqi j qi 2 N ; 1 � i � kg (4)

2.2 Matching Without Attribute Names
The goal for any search is to return documents that are most simi-

lar to the query, ordered by their similarity score. The real problem
lies in defining similarity. The generally accepted approach is to
use someLp norm as the measure of distance and take similarity to
be inverse of this distance.

Consider a query system where attribute names are not available
in either the data or in the query. For a queryQ = fq1; : : : ; qkg,
there must be a true attribute that the user has in mind correspond-
ing to each numberqi in Q. Similarly, for a documentD = fn1;
: : : ; nmg, each numberni in D has a corresponding true attribute.

We call a documentD a true close matchto a queryQ if D
contains a set ofk numbersD0 = fnj1 ; : : : ; njkg such that the
distance betweenQ andD0 is small (i.e., less than some constant
r) and bothqi andnji are the values of the same true attribute. We
have treated bothQ andD as ordered sets in this definition.

We call a documentD a nameless close matchto a queryQ if
D contains a set ofk numbersD0 = fnj1 ; : : : ; njkg such that
the distance betweenQ andD0 is small. Unlike the case of a true
close match, the true attributes corresponding tonij andqi need
not be the same. Notice that by requiring a set ofk numbers in
D, we impose the desired constraint that a number instance in the
document should not match multiple query terms.

CONJECTURE1 (REALISTIC QUERY). For most queries asked
by users, there exists a documentD 2 D that is a true close match
to the query.

In other words, users do not ask queries by combining attribute
values at random, but rather tend to combine them in “realistic”
ways.

CONJECTURE2 (IMPLICIT NAME MATCH). In domains where
the Realistic Query conjecture holds, if a documentD is a name-
less close match to a queryQ, it is likely that thatD is also a true
close match toQ.

Informally, if we get a good match on the numbers between a
document and query, then it is likely that we will have correctly

(a) Non-reflective (b) Low Reflectivity (c) Low Reflectivity (d) High Reflectivity

0

10

20

30

40

50

0 10 20 30 40 50

a
2

a1

Mirror
Reflection

0

10

20

30

40

50

0 10 20 30 40 50

a
2

a1

Mirror

0

10

20

30

40

50

0 10 20 30 40 50

a
2

a1

Mirror

0

10

20

30

40

50

0 10 20 30 40 50

a
2

a1

Mirror

Figure 2: Examples of Non-reflective and Reflective Data

matched the attributes as well. Thus for datasets where this con-
jecture holds, we can match using only the numbers, and still get
good accuracy compared to the benchmark where we know the true
attributes in both the documents and the query.

In Section 3, we define a property calledreflectivitythat allows
us to quantify the extent to which this conjecture holds in a given
dataset. In fact, if the query distribution for some set of true at-
tributes is the same as the data distribution projected onto that sub-
space, the likelihood in the above conjecture is the same as the
value of non-reflectivity.

3. REFLECTIVITY
Consider the data shown in Figure 2(a) for two attributesa1 and

a2. The diamonds indicate the points actually present in the data.
This data is completely non-reflective: for any pointha1=ni; a2=
nji present in the data, its reflectionha1 = nj ; a2 = nii does not
exist. Figure 2(b) gives an example of clustered data that is almost
completely non-reflective. The correlated data in Figure 2(c) is also
largely non-reflective. However, the data in Figure 2(d) is highly
reflective.

The implication of reflectivity is that the queries against a low re-
flectivity data can be answered accurately without knowing the at-
tribute names, provided the realistic query conjecture is true. Hence,
although there is complete overlap between the range of values
of the two attributes in Figures 2(a)-(c), we will get highaccu-
racy on any 2-dimensional query. For example, consider the query
h20; 30i on the data in Figure 2(a). This query can only map to
ha1 = 30; a2 = 20i since there are no points in the region around
ha1=20; a2=30i.

Queries will often span a subset of the dimensions in the dataset,
and reflectivity will depend on the exact set of dimensions being
considered. Consider the queryh20i on the data in Figure 2(a).
This query can map to eitherha1 = 20i or ha2 = 20i, and the
answer to this query will consist of points for which eithera1 or a2
is close to 20. Thus precision on this query will be around 50%, in
contrast to the close to 100% precision that we can get on the query
h20; 30i for the same dataset. Similar behavior is exhibited by data
in Figures 2(b)-(c): they are highlynon-reflective in 2 dimensions,
but quite reflective in either of the 1-dimensional projections.

Before formally defining reflectivity, we make the following ob-
servations.

� Above, we took a given queryQ and checked whether or not
the reflections ofQ coincided with other data points. How-
ever, for similarity queries, we care not only about the exact
query values, but points close to the query values. Hence we
should look at the number of points within distancer of each
reflection ofQ.

� Rather than taking a query and considering whether there are
points close to the reflections of the query, we take a dual

viewpoint. For a given queryQ, we consider how many
reflections of other points are within distancer of Q and
compare this number with the number of points that are truly
within distancer of Q.

3.1 Definition
Let D be a set ofm-dimensional points of cardinalityjDj. Let

~ni denote the co-ordinates of pointxi. We first define reflectivity
over the fullm-dimensional space, and then give a more general
definition for subspaces.

We define thereflectionsof the pointxi to be the set of co-
ordinates obtained by permuting~ni (including ~ni). For example, if
xi wereh1; 2i, the reflections ofxi would befh1; 2i,h2; 1ig.

Let �(~ni) denote the number of points within distancer of ~ni
(in m-dimensional space). The value ofr is so chosen that the
average value of�(~ni) (over allxi 2 D) is close to the number
of top answers that users will be interested in. Let�(~ni) denote
the number of points inD that have at least one reflection within
distancer of ~ni. The reflectivity ofD in m-dimensional space is
then defined to be:

Reflectivity(m; r) = 1 �
1

jDj

X
xi2D

�(~ni)

�(~ni)
(5)

Now consider ak-dimensional subspaceS of the space ofD.
We define thek-reflections of a pointxi in D to be the set of
co-ordinates obtained by considering thek! permutations ofmCk
combinations ofk co-ordinates chosen from~ni. For example, the
2-reflections of a 3-dimensional pointh1; 2; 3iwill be the setfh1; 2i,
h2; 1i, h2; 3i, h3; 2i, h1; 3i, h3; 1ig.

Let ~nsi represent the co-ordinates of pointxi projected onto this
subspace. Let�(S; ~nsi) denote the number of points inD whose
projections onto the subspaceS are within distancer of the co-
ordinates~nsi (in thek-dimensional space). As before, the value of
r is so chosen that the average value of�(S; ~nsi) (over allxi 2 D)
is close to the number of desired top answers. that Let�(S; ~nsi)
denote the number of points inD that have at least onek-reflection
within distancer of the co-ordinates~nsi (in thek-dimensional space).
The reflectivity of the subspaceS is defined to be:

Reflectivity(S; r) = 1�
1

jDj

X
xi2D

�(S; ~nsi)

�(S; ~nsi)
(6)

Finally, let bSk represent the set ofk-dimensional subspacesofD.
Let j bSkj = mCk denote the number ofk-dimensional subspaces
Then, the reflectivity ofD overk-dimensional subspaces is defined
to be the average of the reflectivity in each subspace:

Reflectivity(k; r) =
1

j bSkj
X
S2 bSk

Reflectivity(S; r) (7)

Note that:

Non-reflectivity = 1�Reflectivity (8)

3.2 Implicit Name Match Conjecture
Revisited

Let S be the subspace corresponding to the attribute in a query
Q = fq1; : : : ; qkg. Let ~Q denote the co-ordinates corresponding
to fq1; : : : ; qkg. Then there are�(S; ~Q) documents that are true
close matches toQ, and�(S; ~Q) documents that are nameless close
matches toQ. Hence for this query, the probability that a document
that is a nameless close match will also be a true close match is
simply�(S; ~Q)=�(S; ~Q).

Let us represent a query distribution for a subspaceS by a ran-
dom sample of queriesQ = fQ1; : : : ;QNg drawn from that dis-
tribution. Then for a query belonging to this distribution, the prob-
ability that a document that is a nameless close match will also be
a true close match is

1

jQj

X
Qi2Q

�(S; ~Qi)

�(S; ~Qi)

Finally, if the query distribution for a subspaceS is close to the
distribution of documents projected ontoS, we can treat the set of
points as a sample of the query distribution, and the probability that
a document that is a nameless close match will also be a true close
match is simply Non-reflectivity(S, r). Thus reflectivity can serve
as a close proxy for expected accuracy.

3.3 Computing Reflectivity
If the database knows the correct attribute names corresponding

to data values, we can use Eq. 7 to compute reflectivity. Null val-
ues in the data can be handled as follows. Suppose the values of
some of the co-ordinates of anm-dimensional pointxi are null
(unknown). We ignore this point in the computation of reflectivity
in Eq. 5. When computing the reflectivity of a subspaceS in Eq. 6,
the term�(S; ~nsi)=�(S; ~n

s
i) for pointxi is excluded from the sum-

mation if a null value is present in the set of co-ordinates projected
onto S. However,xi may still contribute to the denominator of
the above term for some other pointxj if a k-reflection ofxi does
not have any null co-ordinate values and this reflection is within
distancer of ~nsj .

The cost of computing reflectivity can be reduced by doing the
summation in Eq. 6 for a sample of data points. Similarly, we can
do summation over a sample of subspaces in Eq. 7.

Consider now the scenario where attribute names have not been
assigned to most of the values in the documents. If we can get
hints for the attribute name, we can treat the highest-ranked hint
for each number as the attribute name and compute reflectivity. We
empirically evaluate this idea in Section 6.6. Our results show that
this idea tends to be useful if the accuracy of hints is relatively high.

Finally, consider the situation in which we do not even have good
hints. The proposed techniques may still work well; we just will not
be able to estimate accuracy a priori. If the answers displayed to the
user show sufficient summary information that the user’s selections
are a reliable indicator of the accuracy of the answer, we can use
the precision of the answers as a rough estimate of reflectivity.

3.4 Remarks

1. Non-overlapping Attributes:If the attributes of a dataset do
not overlap, such data is necessarily non-reflective for queries
of any length.

(a) Clustered & Reflective (b) Correlated & Reflective

0

10

20

30

40

50

0 10 20 30 40 50

a
2

a1

0

10

20

30

40

50

0 10 20 30 40 50

a
2

a1

Figure 3: Counter-examples showing clustered and correlated
datasets that are reflective.

2. Clustering and Correlation:For a fixed amount of overlap
between attributes, clustered and/or correlated datasets are
likely to have lower reflectivity than datasets where the at-
tributes are independent. Figures 2(b) and (c) support this
intuition. In Section 6.5, we quantify this effect for nine real-
world datasets by computing reflectivity both for the origi-
nal dataset and for a modified dataset where we destroy any
correlation or clustering while keeping the actual values of
each attribute fixed. Destroying correlation and clustering
increases reflectivity in all nine datasets, often dramatically.
Of course, it is easy to come up with counter-examples of
correlated or clustered datasets that are quite reflective, as
shown in Figure 3.

4. ALGORITHMS
We now give algorithms for finding documents in response to

a user query. These algorithms assume that the database as well
as queries have no attribute names associated with the numbers.
Section 5 discusses how to take advantage of this extra information.

Recall that a documentD consists ofD = fni jni 2 N ; 1 �
i � mg (Eq. 2). A search queryQ consists ofQ = fqi j qi 2
N ; 1 � i � kg (Eq. 4). Note that bothD andQ are multi-sets.
Each value corresponds to an unspecified attribute name.

In computing the distance of queryQ from a documentD, each
q value is matched with exactly onen value. Given a set of query
numbersq1; : : : ; qk and a set of matching document numbers
nj1 ; : : : ; njk , the distance functionF with theLp norm (1 � p �
1) is defined as

F (Q;D) =

kX
i=1

w(qi; nji)
p

!1=p
(9)

wherew(qi; nji) is the distance betweenqi andnji . We expect
thatF will typically use relative distance, since otherwise some of
query terms will get disproportionate importance and other query
terms will be ignored. For example,w(qi; nj) may be defined as
jqi � njj=jqi + �j.

Maximizing similarity is equivalent to minimizing distance.

4.1 Matching a Document to a Query
Given a setQ = fq1; : : : ; qkg of k numbers, and a setD =

fn1; : : : ; nmg of m document numbers, we want to select the
numbers inD that will lead to the minimum distance. Each number
inD is allowed to match with a single number inQ, and vice versa.

Construct a weighted bipartite graphG as follows:

� Createk source vertices labeledq1; : : : ; qk corresponding to
k numbers inQ.

10

0.25

25 75

20 60

0.25 0.580.5

Figure 4: Bipartite Graph

� Createm target vertices labeledn1; : : : ; nm corresponding
to m numbers inD. If m < k, addk �m target vertices
with value1.

� From each source vertexqi, create an edge to thek closest
target vertices infn1; : : : ; nmg.2 Assign weightw(qi; nj)

p

to the edge(qi; nj).

Figure 4 shows the weighted bipartite graph forQ=f20,60g and
D=f10,25,75g, assuming the distance function to beL1 and
w(qi; nj) = jqi � nj j=jqi + �j.

Lemma The optimum solution to the minimum weight bipartite
graph matching problem for the graphG matches each number in
Q with a distinct number inD such that we get the lowest value for
the distance scoreF (Q;D).

We have marked in bold the edges comprising the optimum so-
lution for the graph in Figure 4. Thus, 20 inQ is matched with 25
in D and 60 with 75 for a total distance score of 0.5.

We can now refer to the rich weighted bipartite graph matching
literature (see survey in [4]) to find the best matching between the
numbers in a query and the numbers in a document. We also obtain
the distance score at the same time, which is used for ranking the
documents. By repeating this process for every document in the
database, we have a solution to our problem. In Section 4.2, we
present techniques that avoid examining every document.

The best known algorithm for the weighted bipartite matching
problem is due to Feder and Motwani [13] and its time complex-
ity is O(e

p
(k+m) log((k+m)2=e)= log(k+m)), wheree is the

number of edges in the graph. Sincee = k2, the complexity is
O(k2

p
(k+m) log((k+m)=k)= log(k+m)).

4.2 Limiting the Set of Documents that are
Matched

We now address the question of how to limit the number of doc-
uments for which we have to compute the distance. This problem
turns out to be similar to that of retrieving the topt objects that have
highest combined score onk attributes, introduced in [11]. We first
describe the score aggregation problem and the threshold algorithm
for solving this problem [12] [14] [20].

Score AggregationProblem Assume that each object in a database
hask scores, one for each ofk attributes. For each attribute, there is
a sorted list, which lists each object and its score for that attribute,
sorted by score (highest score first). There is some monotone ag-
gregation functionf for combining the individual scores to obtain
an overall score for an object. The problem is to efficiently find the
top t objects that have the best overall score.

Threshold Algorithm (TA) There are two modes of access to
data. Sorted access obtains the score of an object in one of the
sorted lists by proceeding through the list sequentially from the top.
Random access obtains the score of an object in a list in one access.
The threshold algorithm works as follows [12].
2For a given source vertex, we only need to create edges to thek
closest targets, since the otherk � 1 source vertices can match at
mostk � 1 targets.

1. Do sorted access in parallel to each of thek sorted listsLi. In
other words, access the top member of each of the lists under
sorted access, then the second member, and so on. As an
objectD is seen in some list, do random access to other lists
to find scoresi of objectD in every listLi. Then compute
the overall scoref(D) = f(s1; : : : ; sk) of objectD. If this
score is one of thet highest we have seen, then rememberD
and its scoref(D).

2. For each listLi, let si be the score of the last object seen
under sorted access. Define the threshold value� to be
f(s

1
; : : : ; sk). Halt whent objects have been seen whose

overall score is at least equal to� .
3. LetY be a set containing thet objects that have been seen

with the highest scores. The result is the graded set
fhD;f(D)i jD 2 Y g.

Proposed Adaptation We now discuss how our problem is simi-
lar to the score aggregation problem. We then show how the thresh-
old algorithm can be adapted to our problem.

Assume that the documents have been processed to create data
structures to support the following types of accesses.

� Database Access:Given a document id, return the multi-set
of numbers present in the document.

� Index Access:Given a number, return the set of documents
in which this number is present. Only numbers that appear
in at least one document are included in this index. Numbers
are kept sorted so that it is easy to determine the nearest left
neighbor (smaller number) and nearest right neighbor (larger
number) of a number. We can use B-tree [6] for this purpose
if the index is too large to fit in memory.

Here is the algorithm, stated in the TA framework. While reading
the algorithm, keep in mind that a document with a lower distance
score is closer to the query, and hence better in our setting.

1. Formk conceptual lists, one for each query termqi as fol-
lows. For everyqi, create an ordered list of numbers
n1i ; n

2
i ; : : : such thatw(qi; n

j
i) � w(qi; n

j+1
i). (Recall that

w(qi; n
j
i) is the distance betweenqi andnji .) Associate the

scoresji = w(qi; n
j
i)with every document returned by index

access onnji . The listLi for qi is now defined to consist of
documents obtained from index look up on termsn1i ; n

2
i ; : : :

sorted in ascending value of score (lowest score first). Note
that these lists are not physically materialized, but the next()
operation on these lists is well-defined and can be efficiently
implemented using the index access described above.

2. Do a round-robin access to each of thek sorted listsLi. As
a documentD is seen in some list, do a database access for
this document and match it with the query using the algo-
rithm from Section 4.1. The distance score returned by the
matching algorithm gives the overall score of the document.

3. Letn0i be the number in the index that we last looked at for
query termqi. Define the threshold value� to be the distance
(
Pk

i=1 w(qi; n
0
i)
p)1=p from Eq. 9. Halt whent documents

have been seen whose distance fromQ is less than or equal
to � .

At this point, for any document that has not been seen in the
index, the closest number to each query termqi must be at
least as far fromqi asn0i, and hence the distance between the
document and the query must be at least as high as� .

Note that unlike the original threshold algorithm, thesi scores
in the adaptation are lower bounds on the distance, not necessarily

the actual distance. In other words, when we match a documentD
to a query, the number that ends up being matched withqi may be
further away fromqi than indicated by the score forD in the sorted
list for qi. The reason is that during matching, a number inD
can only match one query term, but we do not track this constraint
during index access (to avoid the bookkeeping overhead). Thus if
a single number inD is the closest number to two different query
terms, one of the two scores forD will be a lower bound for the
actual distance. This does not affect the correctness of the halting
criteria in step 3, since the threshold value� is a lower bound on
the distance of a document that we have not yet seen, and we stop
when we have seent documents whose distance is lower than� .

5. USING ATTRIBUTENAMES ANDUNITS

5.1 Attribute Names
We now describe how to use hints about attribute names to aid

matching. LetHi denote the set of attribute names associated with
the numberni in a document. As before, letAi denote the set
of attribute names associated withqi in a query. We extend the
distance function from Eq. 9 to incorporate hints as follows:

F (Q;D) =

kX
i=1

(w(qi; nji)
p +B � v(Ai;Hji)

p)

!1=p
(10)

The parameterB balances the importance between the match on
the numbers and the match on the hints. In general, the higher the
accuracy of the hints and the higher the reflectivity of the data, the
higher should be the value ofB.

Recall that the functionw(qi; nj) determines the distance be-
tween a query number and a document number. Analogously,
v(Ai;Hj) is a function that determines the distance between the
set of attribute names associated with a query number and the set
of attribute names associated with a document number. We use the
following distance functionv in our experiments:

v(Ai;Hj) =

8<: 0 if Ai \Hj 6= �
0 if Ai = �
1 otherwise

(11)

This function penalizes a match only ifqi andnj are likely to be-
long to different attributes. Hence if any of the attribute names in
the query matches any of the hints, or if there is no attribute name
specified in the query, the distance is zero. Otherwise, the distance
is 1.

Our techniques are independent of the specific form of the func-
tion v. A more sophisticated function form tuned to the specific
data extractor being used (e.g., by incorporating belief values gen-
erated by the data extractor) may yield better results. However, as
we will see, our experiments indicate that even this simple function
can be quite effective.

Determining the weight B A good value forB is important
for successfully using hints. Suppose the website provides enough
summary with each answer that the user is likely to click on rele-
vant answers. By tracking user clicks, we can get a set of queries
for which we know the true answers with high probability. Treat
this set as a tune set and evaluate the performance of the matching
algorithm for different values ofB. Then pick the value that gives
the highest accuracy. If a set of values give similar accuracy, pick
the median value in the set. Note that the best value ofB is likely
to be different for different query sizes, and hence we will need a
tune set per query size.

Constructing the Bipartite Graph As before, we map the match-

ing problem to weighted bipartite graph matching. The only differ-
ence is that we now assignw(qi; nj)

p + B � v(Ai;Hj)
p as the

weight of the edge(qi; nj).

Limiting the Set of Matches The algorithm proposed in Sec-
tion 4.2 can be used as is even in the presence of hints, since we
only need thesji score to be a lower bound on the true distance.
That is, we can usesji = w(qi; n

j
i) to create the sorted listLi for

qi, ignoring the match on attribute names.
However, the algorithm will be considerably more efficient if we

modify it as follows. First, create an index to support an additional
type of access,hint index access:given a numberni together with
an attribute nameai, return the set of documents in whichni is
present and the set of hints forni includesai. The original index
can be (conceptually) treated as a special case of this index, where
the attribute nameai = �.

Now, in Step 1, for each query termqi, create an ordered list
hn1i ; a

1
i i; hn

2
i ; a

2
i i; : : : and associate the scoresji = w(qi; n

j
i)
p +

B�v(Ai; fa
j
i g)

p with the entryhnji ; a
j
i i, such thatsji � sj+1i . We

can do this efficiently by using hint index access for each attribute
name in the set of hintsAi associated with the query termqi, and
also for the empty attribute name�. Step 2 does not change. In
Step 3, the only change is that we now define the threshold value
� to be(

Pk
i=1(w(qi; n

0
i)
p + B � v(Ai; fa0ig)

p))1=p from Eq 10,
wherehn0i; a

0
ii is the entry in the index that we last looked at for

query termqi.

5.2 Units
If the unit names are available in addition to attribute names, we

extend the distance function from Eq. 10 by adding a termBu �
u(Au

i ;H
u
ji)

p for whether the units match:

F (Q;D) =

kX
i=1

(w(qi; nji)
p + B � v(Ai;Hji)

p

+ Bu � u(Au
i ;H

u
ji)

p)

�1=p
(12)

Au
i denotes the set of unit names forqi,Hu

j is the set of unit names
for nj, andu(Au

i ;H
u
j) is the distance function between the two

sets of unit names. The functionu(Au
i ; H

u
j) is defined in a manner

similar tov(Ai;Hj). The parameterBu is analogous toB and can
be similarly computed.

An additional complication arises due to different units (e.g.,
MHz and GHz) being assigned to the values of the same attribute.
In some cases, this problem can be approached by converting the
corresponding quantities into a ‘standard’ form.

6. EXPERIMENTS
In this section, we report the results of experiments we performed

to study the accuracy and performance characteristics of the pro-
posed techniques. We used synthetic as well as real datasets in this
study. Synthetic datasets are amenable to controlled experiments,
while real datasets are good as a sanity check.

6.1 Accuracy Metric
Given a databaseD in which the correct correspondences be-

tween the numbers and the attribute names are known, a query
Q consisting of numbers and full information about the attribute
names corresponding to those numbers, we could generate the “per-
fect” answer of topt matching documentsMP (t) = fDp1 ; : : : ;
Dptg for a given distance functionF . If the information about
the attribute name is not available or only partially available in the
form of hints, we would generate a different set of topt matching
documentsM(t) = fD1; : : : ;Dtg.

Precision(t) is defined to be the the percentage of documents in
MP (t) that are also present inM(t):

Precision(t) =
jMP (t) \M(t)j

jM(t)j
� 100 (13)

We sett to 10 in our experiments, corresponding to the number
of hits typically displayed on the first page by search engines, and
refer to Precision(10) as simply Precision.

6.2 Datasets

6.2.1 Synthetic Data
A document is modeled as a set ofm numbers, corresponding to

m known attributes. We generated three types of synthetic data:

1. Independent: Each attribute is independent of the other at-
tributes.

2. Correlated: Attribute ai+1 is correlated with attributeai.

3. Clustered: Data is clustered around a few cluster centers.

We expect Independent to be more reflective, and Clustered and
Correlated to be less reflective. Therefore, we should get higher
precision on Clustered and Correlated, and lower precision on In-
dependent.

Figure 5 shows the pseudocode for generating the three types of
synthetic data. We uses[] to control the amount of reflectivity.
The value ofs[j] is initially set toR � j, whereR is a parameter
that controls to the amount of overlap between the range of values
of various attributes, which in turn influences reflectivity. If we
wanted to generate a dataset with almost no overlap between any
of the attributes,R would be set to a high value, e.g., 10. On the
other hand, if we wanted very high overlap between the attributes,
Rwould be set to 0. In our experiments, we manually tunedR such
that the 1-dimensional non-reflectivity is roughly 80% for each of
the three datasets (with the default number of attributes). The val-
ues ins[] are then randomly permuted, so that for the correlated
dataset there is no connection between which attributes are corre-
lated and which attributes are adjacent in terms of values.

Figure 6 shows the settings used in the synthetic data experi-
ments. The Range column gives the range of values used in various
experiments. The Default column provides the default value of the
corresponding parameter. Query size refers to the number of terms
in the query.

To generate a query of sizek, we first pick a document at ran-
dom. Next, for Independent and Clustered, we randomly pickk at-
tributes from the document, and for Correlated, we randomly pick a
set ofk consecutive attributes. We then remove this document from
the dataset, and compute the precision. (If we kept the document in
the dataset, our scores would be artificially boosted.) We average
the results over 1000 queries for each combination of parameters
and query size. We useL1 to compute distance between a query
and a document in all our experiments.

6.2.2 Real Data
Figure 7 gives information about the nine real datasets used in

our experiments. The first four datasets came from the Pangea
data on electronic components for different categories of electronic
parts. The last five datasets are from the University of California–
Irvine Repository of Machine Learning. A record here corresponds
to a document.

The query generation procedure used with the real data is iden-
tical to the procedure we described for the Independent and Clus-
tered data. All results are the average of 1000 queries.

// N : number of documents
// m: number of attributes
// Di: ith document
// Di(j): value of the attributej in documentDi

// R: controls the amount of overlap
// s[]: s[j] set toR� j and thens[] is permuted
// Gauss(): Gaussian with� = 0 and� = 1

Independent:
1) for i := 1 toN
2) for j := 1 tom
3) Di(j) := Gauss() + s[j]

Correlated:
1) for i := 1 toN
2) Di(1) := Gauss()
3) for j := 2 tom
4) Di(j) := (Di(j � 1) + Gauss())� 0.7
5) for j := 1 tom begin
6) Di(j) := Di(j) + s[j]

Clustered:
// C: number of clusters
1) for i := 1 toC
2) for j := 1 tom
3) Di(j) := Gauss() + s[j]
4) for i := C + 1 toN
5) cid := (i modC) + 1
6) for j := 1 tom
7) Di(j) := Dcid(j) + 0.2� Gauss()

Figure 5: Synthetic Data Generation

Parameter Default Range
Number of Attributes (m) 20 5 to 50
Number of Documents (N) 10K 1K to 800K
Query Size (k) 5 1 to 10
1-dim. non-reflectivity 80% 100% to 10%
Data Type Ind., Corr., Clust.

Figure 6: Parameters for Synthetic Data Experiments

Number Maximum Average
of Number of Number of

Source Dataset Records Attributes Attributes
Pangea DRAM 3,866 10 6.8

LCD 1,733 12 9.4
Microprocessor 1,133 12 5.3
Transistor 22,273 24 13.3

UCI Automobile 205 16 15.7
Housing 506 14 14
Glass 214 10 10
Wine 179 14 14
Credit 666 6 6

Figure 7: Real Datasets

(a) Precision (a) Precision (a) Precision

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

P
re

ci
si

on

Query Size

Clust
Corr
Ind

0

20

40

60

80

100

1 10 100

P
re

ci
si

on

Number of Documents (000s)

Clust
Corr
Ind

0

20

40

60

80

100

5 10 20 30 40 50

P
re

ci
si

on

Number of Data Attributes

Clust
Corr
Ind

(b) Non-Reflectivity (b) Non-Reflectivity (b) Non-Reflectivity

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

N
on

-R
ef

le
ct

iv
ity

Subspace Dimensionality

Clust
Corr
Ind

0

20

40

60

80

100

1 10 100

N
on

-R
ef

le
ct

iv
ity

Number of Documents (000s)

Clust
Corr
Ind

0

20

40

60

80

100

5 10 20 30 40 50

N
on

-R
ef

le
ct

iv
ity

Number of Data Attributes

Clust
Corr
Ind

Figure 8: Varying query size (#docu-
ments = 10K, #attributes = 20)

Figure 9: Varying number of documents
(Query Size = 5, #attributes = 20)

Figure 10: Varying number of attributes
(Query Size = 5, #documents = 10K)

6.3 Relationship of Precision to Reflectivity
Figure 8(a) shows the precision on the three synthetic datasets as

the query size is increased. We compute answers to the same query
under two settings: (i) attribute names are known for both data
and query, and (ii) attribute names are ignored in data as well as
query. We then use Eq. 13 to compute precision. Figure 8(b) plots
non-reflectivity versus subspace dimensionality. Non-reflectivity is
computed assuming attribute names are known in the data. Both
precision and non-reflectivity have been plotted as a percentage.
These figures show that precision at a given query size closely
tracks non-reflectivity for the corresponding subspace dimension-
ality.

As anticipated, both Clustered and Correlated gave higher preci-
sion than Independent. Clustered gave higher precision than Cor-
related for higher query dimensions. To understand the behavior of
Clustered with increasing subspace dimensionality, recall our ex-
ample from Figure 2(b). This dataset has very low reflectivity in
2 dimensions, but high reflectivity in one dimension. Similarly, in
our synthetic data, the clusters gradually merge as we drop dimen-
sions, leading to an increase in reflectivity for lower dimensions.
By the time we reach 2 dimensions, the clusters have completely
disappeared and Clustered starts behaving like Correlated and In-
dependent.

Figure 9(a) shows the precision as a function of the number of
documents. Figure 10(a) shows the precision as a function of the
number of data attributes. We again note from corresponding (b)
figures that the precision closely tracks non-reflectivity.

6.4 Effectiveness of Indexing
We now study the effectiveness of indexing in limiting the set of

documents for which we have to compute the distance for a query.
All our experiments were run on a 933 MHz Pentium III with 512
MB of memory. The code was written in Java and run with Sun
JDK 1.3 Hotspot Server. The execution times will be faster with

C++, but the relative impact of various factors is likely to be the
same. Both index and documents were kept completely in memory,
limiting us to around 800,000 documents.

Figure 11 shows the execution times with and without indexing
for the Independent, Correlated and Clustered datasets. The time
without indexing was almost identical for the three datasets, and
hence we only plot one curve, “Scan” for the no indexing case.

Figure 11(a) shows the execution time results for different query
sizes for the three synthetic datasets. The index is quite effective
for smaller query sizes, which we expect to be the norm. For larger
query sizes, the dimensionality curse begins to catch up and using
the index only does a little better than a full scan.

Figure 11(b) shows the scalability of the indexing as we increase
the number of documents from 1000 to almost 1 million. At query
size 5, the number of documents matched goes up by a factor of
about 250 times as we increase the number of documents by 800
times, and the number of index entries scanned goes up around 200
times. Hence while the fraction of the index scanned and the per-
centage of documents checked both decrease slightly, the absolute
time goes up almost linearly with the number of documents. At
800,000 documents, we take slightly more than 1 second for query
size 5 and around 0.03 seconds for query size 2.

Figure 11(c) shows that the execution time remains flat as we in-
crease the number of attributes. In our synthetic datasets, adding
new attributes does not change the average amount of overlap be-
tween attributes. Hence the number of documents matched or index
entries scanned is not affected by adding more attributes. However,
matching takes a little longer, and hence the overall time goes up
slightly.

Figure 12 shows results on three of the real datasets. For DRAM,
there were often a large number of documents at a distance of zero
from the queryQ for smaller query sizes. Hence whether we stop as
soon as we get 10 documents with zero distance, or whether we get
all documents at zero distance (and then present a random sample),

(a) Varying query size (#documents =
10K, #attributes = 20)

(b) Varying number of documents
(Query Size = 5, #attributes = 20)

(c) Varying number of attributes (Query
Size = 5, #documents = 10K)

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10

T
im

e
(m

s)

Query Size

Scan
Ind

Corr
Clust

1

10

100

1000

10000

1 10 100 1000

T
im

e
(m

s)

Number of Documents (000s)

Scan
Ind

Corr
Clust

10

100

1000

5 10 15 20 25 30 35 40 45 50

T
im

e
(m

s)

Number of Attributes

Scan
Ind

Corr
Clust

Figure 11: Effectiveness of Indexing

(a) DRAM (b) Auto (c) Wine

0.01

0.1

1

10

100

1 2 3 4 5 6 7

T
im

e
(m

s)

Query Size

Scan
All Closest

Any 10

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10

T
im

e
(m

s)

Query Size

Scan
All Closet

Any 10

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10

T
im

e
(m

s)

Query Size

Scan
All Closest

Any 10

Figure 12: Effectiveness of Indexing on Real Data

makes a dramatic difference in the running time. The “All Closest”
line shows the former case, and the “Any 10” line the latter. For the
other two datasets, this is not a significant issue, and hence these
two lines are very close to each other. Again, we can conclude that
indexing is quite effective for smaller query sizes.

6.5 Precision on Real Data
Figure 13 shows the precision and non-reflectivity as a percent-

age in the same graph for the nine real datasets. The x-axis for
precision and non-reflectivity is query size and subspace dimen-
sionality respectively. We again see thatnon-reflectivity can pro-
vide a good estimate of the expected precision. We also see that
real datasets can be quite non-reflective and hence our techniques
can be effectively used on them.

Effect of Clustering and Correlation In Section 3, we stated our
intuition that clustering and correlation would typically increase
non-reflectivity. To verify this conjecture, we study the effect of
destroying any clustering or correlation effects in a dataset by ran-
domly permuting the values for every attribute. (We permute the
values of an attribute across documents, not across different at-
tributes.) If the attributes were originally independent, this permu-
tation will not affect reflectivity, since permutation does not affect
the distribution of values for each attribute. Hence the difference
in non-reflectivity between the original data and the randomized
data can be attributed to clustering and correlation. The line “Ran-
domized Non-Refl.” shows the non-reflectivity on the randomized
datasets. For all but the Credit dataset, randomized non-reflectivity
is substantially lower than non-reflectivity.

6.6 Using Attribute Names as Hints
We generated data for this set of experiments by starting with

the real datasets and then augmenting them with hints. Our pro-
cedure for generating hints takes two parameters: AvgNumHints
and ProbTrue. AvgNumHints is the average number of hints per
data value. Each data value is assigned at least one hint, hence the
minimum value of AvgNumHints is 1. If AvgNumHints is greater
than 1, then the number of hints for a specific data value is deter-
mined using a Poisson distribution. ProbTrue is the probability that
the set of hints for a data value includes the true attribute name.
Figure 14 gives the pseudocode for generating hints for a given
data value. In general, increasing AvgNumHints should result in
increasing ProbTrue. However, since the exact relationship is data
and data extractor dependent, in any given experiment, we fix one
of the values and vary the other. The query consists of numbers
together with the corresponding true attribute name.

We synthesized nine datasets from the real datasets described
earlier, and experimented with all of them. However, we show the
graphs for only three representative datasets: DRAM, Auto and
Wine. DRAM and Auto have high non-reflectivity, and Wine lower
non-reflectivity.

Weighting the Match on Hints Figure 15 shows the effect of
changing the weight given to the match on the attribute names (the
parameterB in Eq. 10). AvgNumHints was set to 1, so that every
data value had exactly one hint assigned to it. The different curves
show precision for different values of ProbTrue. If the hints are
accurate (high value of ProbTrue), then precision rapidly goes up
with increasingB. For DRAM, the precision goes up for values of
B much smaller than 0.01, and hence Figure 15(a) does not show
this increase. For queries on DRAM, there are often different at-
tributes with the same numeric value as the query value, and even
a small value ofB is sufficient to pick between them. If the hints
are not very accurate, precision goes down with increasingB. One

(a) DRAM (b) LCD (c) Microprocessor

0

20

40

60

80

100

1 2 3 4 5 6 7
Query Size / Subspace Dimensionality

Precision
Non-Reflectivity

Randomized Non-Refl.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10
Query Size / Subspace Dimensionality

Precision
Non-Reflectivity

Randomized Non-Refl.

0

20

40

60

80

100

1 2 3 4 5 6
Query Size / Subspace Dimensionality

Precision
Non-Reflectivity

Randomized Non-Refl.

(d) Transistor (e) Automobile (f) Credit

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10
Query Size / Subspace Dimensionality

Precision
Non-Reflectivity

Randomized Non-Refl.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10
Query Size / Subspace Dimensionality

Precision
Non-Reflectivity

Randomized Non-Refl.

0

20

40

60

80

100

1 2 3 4 5 6
Query Size / Subspace Dimensionality

Precision
Non-Reflectivity

Randomized Non-Refl.

(g) Glass (h) Housing (i) Wine

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10
Query Size / Subspace Dimensionality

Precision
Non-Reflectivity

Randomized Non-Refl.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10
Query Size / Subspace Dimensionality

Precision
Non-Reflectivity

Randomized Non-Refl.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10
Query Size / Subspace Dimensionality

Precision
Non-Reflectivity

Randomized Non-Refl.

Figure 13: Precision on Real Datasets

// ProbTrue: Prob. of true attribute name being in the set of hints
// Rand(0,1): Uniform Random number between 0 and 1

n := 1 + Poisson(AvgNumHints-1)
Af := A� true attribute name
if (Rand(0,1)� ProbTrue)

Output true attribute name andn�1 names randomly
selected fromAf

else
Outputn attribute names randomly selected fromAf

Figure 14: Generating Hints

should not conclude thatB should be1 if hints are accurate and 0
otherwise. For example, in the case of wine with ProbTrue between
0.6 and 0.8, the precision initially goes up withB and then drops
back down. Therefore it is important to choose a good value ofB.

In the rest of the experiments, we assume we have a tune set of
100 queries (per query size) for which we know the best match.
We compute Precision over this tune set for different values ofB

(specifically, we usedf 0.01, 0.03, 0.1, 0.3, 1, 3, 10g). We then
choose the value that gives the highest precision. As we mentioned
in Section 5, this method can be used as long as the website pro-
vides enough summary with each answer so that the user is likely
to click on relevant answers.

Effectiveness of Hints Figure 16 shows the gains in precision for
different values of ProbTrue when AvgNumHints is set to 1. Notice
that for datasets with high non-reflectivity (DRAM and Auto), the
hints have to be extremely accurate (ProbTrue> 0.9) to add signifi-
cant value. However, for datasets with low non-reflectivity (Wine),
even hints with lower levels of accuracy can increase precision.

Number of Hints In the previous set of experiments, we found
that ProbTrue (the probability that the set of hints will include the
true attribute name) had to be quite high to increase precision. In
many domains, such high values of ProbTrue may not be achievable
without having multiple hints per attribute, where only one of the
hints is correct. Figure 17 shows precision for different values of
the average number of hints (AvgNumHints). For each line, we
have fixed the value of ProbTrue.

(a) DRAM (query size 2) (b) Auto (query size 2) (c) Wine (query size 5)

0

20

40

60

80

100

0.01 0.1 1 10

P
re

ci
si

on

Weight of Hint Match (B)

0.99
0.9
0.8
0.7
0.6

No Hints
0

20

40

60

80

100

0.01 0.1 1 10

P
re

ci
si

on

Weight of Hint Match (B)

0.99
0.9
0.8
0.7
0.6

No Hints
0

20

40

60

80

100

0.01 0.1 1 10

P
re

ci
si

on

Weight of Hint Match (B)

0.99
0.9
0.8
0.7
0.6

No Hints

Figure 15: Effect of balance between Number Match and Hint Match

(a) DRAM (b) Auto (c) Wine

0

20

40

60

80

100

1 2 3 4 5 6 7

P
re

ci
si

on

Query Size

0.99
0.9
0.8

No Hints
0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

P
re

ci
si

on

Query Size

0.99
0.9
0.8

No Hints
0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

P
re

ci
si

on

Query Size

0.99
0.9
0.8
0.7
0.6

No Hints

Figure 16: Effectiveness of Hints

As expected, for a fixed value of ProbTrue, precision decreases
as the number of hints increases. However, we expect ProbTrue
to increase with the number of hints. Consider Figure 17(c), and
assume we have a data extractor that gives ProbTrue of 0.7 when
AvgNumHints = 1, ProbTrue of 0.9 when AvgNumHints = 1.5, and
ProbTrue of 0.99 when AvgNumHints� 3. In this scenario, choos-
ing AvgNumHints = 3 will result in the highest precision. Thus,
having multiple hints can improve precision if there is anaccom-
panying increase in ProbTrue.

Estimating Reflectivity using Hints Finally, we explore how
well we can estimate non-reflectivity when we do not know true
attributes but only have hints about them. We generate data with
AvgNumHints = 1 and different values of ProbTrue, treat each hint
as if it were the true attribute name, and compute reflectivity. Fig-
ure 18 shows the results. The values on the y-axis, with ProbTrue =
1, are the true values of non-reflectivity. The non-reflectivity esti-
mates are lower with hints than with true attribute names. However,
for small subspace dimensions, the drop-off is sufficiently gradual
that the estimate is still useful when the hints are reasonably ac-
curate. For larger subspace dimensions, the drop-off is sometimes
quite steep. Hence if the estimate for non-reflectivity has a low
value, we cannot be sure that the true value of non-reflectivity is
indeed low or whether it is an artifact of the inaccuracy of hints.
But if we get a high value, we can be confident that the true value
of non-reflectivity is also high.

7. CONCLUSIONS
Many web text repositories consist of documents in which it is

difficult to establish exact correspondencesbetween attribute names
and their numeric values. To enable nearest-neighbor queries over
such repositories, we explored a rather audacious approach of using

only sets of numbers in the search, ignoring any attribute names.
We showed that matching a document with a query in this setting
corresponds to the weighted bipartite graph matching problem. We
also showed how to limit the number of documents that we have to
match with a given query.

We identified a data property, called reflectivity, that can tell a
priori how well our approach will work against a dataset. High non-
reflectivity in data assures that our techniques will have high pre-
cision. Our experiments showed that real datasets can exhibit high
non-reflectivity and our techniques yielded high precision against
these datasets. Using synthetic data, we also showed the scalability
and resilience of our techniques in terms of the number of docu-
ments, number of attributes in the data, size of queries, and types
of data.

We also showed how we can use imprecise attribute names as
hints to improve precision. Hints are particularly helpful when the
data has low non-reflectivity. However, for datasets with high non-
reflectivity, hints have to be extremely accurate to improve preci-
sion beyond what we get by matching numbers.

In the future, we plan to extend this work in three directions.
First, we would like to handle queries in which value ranges are
provided. Second, some extraction procedures associate confidence
values with the attribute names assigned to a number. We wish
to explore how to take advantage of this additional information.
Finally, we would like to better understand the interaction between
correlated and clustered data and reflectivity.

Acknowledgment We wish to thank Ron Fagin for discussions
on the threshold algorithm.

8. REFERENCES
[1] S. Berchtold, C. Bohm, D. A. Keim, F. Krebs, and H.-P.

Kriegel. On optimizing nearest neighbor queries in

(a) DRAM (query size 2) (b) Auto (query size 2) (c) Wine (query size 5)

0

20

40

60

80

100

1 2 3 4 5

P
re

ci
si

on

Average Number of Hints per Value

0.99
0.9

No Hints

0

20

40

60

80

100

1 2 3 4 5

P
re

ci
si

on

Average Number of Hints per Value

0.99
0.9

No Hints

0

20

40

60

80

100

1 2 3 4 5

P
re

ci
si

on

Average Number of Hints per Value

0.99
0.9
0.8
0.7

No Hints

Figure 17: Number of Hints

(a) Subspace Dim. 2 (b) Subspace Dim. 5

0

20

40

60

80

100

1 0.9 0.8 0.7 0.6 0.5

N
on

-R
ef

le
ct

iv
ity

(%
)

Prob. of True Hint

Dram
Auto

Credit
Glass

Housing
Wine

0

20

40

60

80

100

1 0.9 0.8 0.7 0.6 0.5
N

on
-R

ef
le

ct
iv

ity
(%

)
Prob. of True Hint

Dram
Auto

Credit
Glass

Housing
Wine

Figure 18: Estimating Reflectivity using Hints

high-dimensional data spaces. InProc. of the 8th Int’l Conf.
on Database Theory, London, January 2001.

[2] A. Broder and M. Henzinger. Information retrieval on the
web: Tools and algorithmic issues. InFoundations of
Computer Science, Invited Tutorial, 1998.

[3] S. Chakrabarti. Data mining for hypertext: A tutorial survey.
SIGKDD Explorations, 1, 2000.

[4] B. Cherkassky, A. Goldberg, P. Martin, J. Setubal, and
J. Stolfi. Augment or push? A computational study of
bipartite matching and unit capacity flow algorithms.
Technical Report 97-127, NEC Research Institute,1997.

[5] J. Cho and S. Rajagopalan. A fast regular expression
indexing engine. InProc. of the Int’l Conference on Data
Engineering, San Jose, California, Feb. 2002.

[6] D. Comer. The ubiquitous B-tree.ACM Computing Surveys,
11(2):121–138, June 1979.

[7] A. Crespo, J. Jannink, E. Neuhold, M. Rys, and R. Studer. A
survey of semi-automatic extraction and transformation.
http://www-db.stanford.edu/ crespo/publications/.

[8] U. Dayal and H.-Y. Hwang. View definition and
generalization for database integration in a multidatabase
system.IEEE Trans. Software Eng., 10(6):628–645, 1984.

[9] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and
R. Harshman. Indexing by latent semantic analysis.Journal
of the American Society for Information Science,
41(6):391–407, 1990.

[10] C. Dwork, M. Naor, R. Kumar, and D. Sivakumar. Rank
aggregation methods for the web. InProc. of the 10th Int’l
World Wide Web Conference, Hong Kong, May 2001.

[11] R. Fagin. Combining fuzzy information from multiple
systems (extended abstract). InSymposium on Principles of
Database Systems, 1996.

[12] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. InSymposium on Principles of
Database Systems, 2001.

[13] T. Feder and R. Motwani. Clique partitions, graph
compression and speeding-up algorithms.Journal of
Computer and System Sciences, 51:261–272, 1995.

[14] U. Guntzer, W.-T. Balke, and W. Kiessling. Optimizing
multi-feature queries for image databases. InProc. of the
26th Int’l Conf. on Very Large Databases, Cairo, 2000.

[15] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. InACM
Symposium on Theory of Computing, pages 604–613, 1998.

[16] V. Kashyap and A. P. Sheth. Semantic and schematic
similarities between database objects: A context-based
approach.VLDB Journal, 5(4):276–304, 1996.

[17] W. Kim and J. Seo. Classifying schematic and data
heterogeneity in multidatabase systems.IEEE Computer,
24(12):12–18, 1991.

[18] Z. Kopal, editor.Physics and Astronomy of the Moon.
Academic Press, 1962.

[19] I. Muslea. Extraction patterns for information extraction
tasks: A survey. InThe AAAI-99 Workshop on Machine
Learning for Information Extraction, 1999.

[20] S. Nepal and M. V. Ramakrishna. Query processing issues in
image (multimedia) databases. InProc. of the 15th Int’l
Conf. on Data Engineering, 1999.

[21] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. InProc. of the 1995 ACM SIGMOD Int’l
Conf. on Management of Data, pages 71–79, 1995.

[22] G. Salton.Automatic Text Processing: The Transformation,
Analysis, and Retrieval of Information by Computer.
Addison-Wesley, New York, 1989.

