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Abstract

This dissertation presents fast algorithms for mining associations in large datasets. An

example of an association rule may be \30% of customers who buy jackets and gloves

also buy hiking boots." The problem is to �nd all such rules whose frequency is greater

than some user-speci�ed minimum. We �rst present a new algorithm, Apriori, for mining

associations between boolean attributes (called items). Empirical evaluation shows that

Apriori is typically 3 to 10 times faster than previous algorithms, with the performance

gap increasing with the problem size. In many domains, taxonomies (isa hierarchies) on

the items are common. For example, a taxonomy may say that jackets isa outerwear isa

clothes. We extend the Apriori algorithm to �nd associations between items at any level

of the taxonomy.

Next, we consider associations between quantitative and categorical attributes, not

just boolean attributes. We deal with quantitative attributes by �ne-partitioning the

values of the attribute and then combining adjacent partitions as necessary. We also

introduce measures of partial completeness which quantify the information loss due to

partitioning. These measures can be used to determine the number of partitions for each

attribute. We enhance the Apriori algorithm to e�ciently �nd quantitative associations.

Finally, we consider associations over time, called sequential patterns. An example

of such a sequential pattern may be \2% of customers bought `Ringworld' in one trans-

action, followed by `Foundation' and `Ringworld Engineers' in a later transaction". We

allow time constraints between elements of the sequential patterns, and also allow all the

items in an element to be present in a sliding time window rather than at a single point

in time. We present GSP, an algorithm for �nding such patterns, based on intuitions
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similar to those for the Apriori algorithm.

All the above algorithms scale linearly with the size of the data (for constant data

characteristics). These algorithms have been used in a variety of domains, including

market basket analysis, attached mailing, fraud detection and medical research. We

conclude the dissertation with directions for future work.
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Chapter 1

Introduction

1.1 Background

Data mining [AIS93a] [ABN92] [HS94] [MKKR92] [SAD+93] [Tsu90], also known as

knowledge discovery in databases [FPSSU95] [HCC92] [PSF91], has been recognized as

a promising new area for database research. This area can be de�ned as e�ciently

discovering interesting patterns from large databases [AIS93a]. The motivation for data

mining is that most organizations have collected massive amounts of data, and would

like to discover useful or interesting patterns in their data. For example, insurance

companies would like to discover patterns that indicate possible fraudulent activity, mail

order companies would like to discover patterns that let them cut their mailing costs by

only targeting customers likely to respond, and hospitals would like to use their data for

medical research. Data mining problems include:

� Associations: The problem of mining association rules over basket data was

introduced in [AIS93b]. Given a set of transactions, where each transaction is a set

of literals (called items), an association rule is an expression of the form X ) Y ,

where X and Y are sets of items. The intuitive meaning of such a rule is that

transactions of the database which contain X tend to contain Y . An example of an

association rule is: \30% of transactions that contain beer also contain diapers; 2%

of all transactions contain both of these items". Here 30% is called the con�dence of

the rule, and 2% the support of the rule. The problem is to �nd all association rules

that satisfy user-speci�ed minimum support and minimum con�dence constraints.
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In this dissertation, we examine the problem of mining association rules. We �rst

present fast algorithms for this problem, then generalize the problem to include

taxonomies (isa hierarchies) and quantitative attributes, and �nally describe how

these ideas can be applied to the problem of mining sequential patterns. Se-

quential patterns are inter-transaction associations, unlike the intra-transaction

association rules. An example of a sequential pattern might be \5% of customers

bought `Foundation' and `Ringworld' in one transaction, followed by `Second Foun-

dation' in a later transaction". We describe the contributions of this dissertation

in Section 1.2, and its applications in Section 1.3.

� Classi�cation [BFOS84] [Cat91] [FWD93] [HCC92] [Qui93]:

The input data for classi�cation, also called the training set, consists of multiple

examples (records), each having multiple attributes or features. Additionally, each

example is tagged with a special class label. The objective of classi�cation is to

analyze the input data and to develop an accurate description or model for each

class using the features present in the data. The class descriptions are used to

classify future test data for which the class labels are unknown. They can also be

used to develop a better understanding of each class in the data.

For instance, consider a credit card company with data about its cardholders.

Assume that the cardholders have been divided into two classes, good and bad

customers, based on their credit history. The company wants to develop a pro�le for

each customer class that can be used to accept/reject future credit card applicants.

This problem can be solved using classi�cation. First, a classi�er is given the

customer data along with the assigned classes as input. The output of the classi�er

is a description of each class (good/bad) which can then be used to process future
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card applicants. Similar applications of classi�cation include target marketing,

medical diagnosis, treatment e�ectiveness and store location.

� Clustering [ANB92] [CKS+88] [Fis87]:

The input data for clustering looks quite similar to that for classi�cation, except

that there are no class labels. The objective of clustering is to group the records

such that \similar" records are in the same group. Applications of clustering include

customer segmentation, and targeted marketing. A classi�er is often run on the

results of clustering to understand the clusters.

� Similar Time Sequences [AFS93] [FRM94] [ALSS95]:

Time-series data constitute a large portion of data stored in computers. The ca-

pability to �nd time-series (or portions thereof) that are \similar" to a given time-

series or to be able to �nd groups of similar time-series has several applications.

Examples include identifying companies with similar pattern of growth, �nding

products with similar selling patterns, discovering stocks with similar price move-

ments, determining portions of seismic waves that are not similar to spot geological

irregularities, etc.

� Data Summarization:

[HCC92] use attribute-oriented induction to summarize a database relation. They

use taxonomies on the attributes to generalize records, and merge duplicates (while

maintaining their count). If an attribute has a large number of values that cannot

be generalized, the attribute is dropped. The result of this process is a small

number of records that describe the data.
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Some data mining problems may require several techniques. For example, a clas-

si�cation algorithm may be run on the results of clustering to understand the results.

Visualization is often useful both before the mining (to look at the data) and after the

mining (to understand the output).

The need for a human in the loop and providing tools to allow human guidance of the

rule discovery process has been articulated, for example, in [B+93] [KI91] [Tsu90]. We

do not discuss these issues further, except to point out that these are necessary features

of a rule discovery system that may use our algorithms as the engine of the discovery

process.

1.2 Dissertation Contributions

Association Rules We present two new algorithms for mining association rules. Ex-

periments with synthetic as well as real-life data show that these algorithms outperform

earlier algorithms by factors ranging from three for small problems to more than an order

of magnitude for large problems. We also show how the best features of the two proposed

algorithms can be combined into a hybrid algorithm, called AprioriHybrid.

Generalized Association Rules In many cases, users have a taxonomy (isa hierar-

chy) on the items, and want to �nd generalized associations between items at any level

of the taxonomy. For example, given a taxonomy that says that jackets isa outerwear

isa clothes, we may infer a rule that \people who buy outerwear tend to buy shoes".

This rule may hold even if rules that \people who buy jackets tend to buy shoes", and

\people who buy clothes tend to buy shoes" do not hold.

An obvious solution to the problem is to add all ancestors of each item in a transaction

to the transaction, and then run any of the algorithms for mining association rules on
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these \extended transactions". However, this \Basic" algorithm is not very fast; we

present two algorithms, Cumulate and EstMerge, which run 2 to 5 times faster than

Basic (and more than 100 times faster on one real-life dataset).

We also present a \greater-than-expected-value" interest-measure for rules which uses

the information in the taxonomy. Given a user-speci�ed \minimum-interest-level", this

measure prunes a large number of redundant rules; 40% to 60% of all the rules were

pruned on two real-life datasets.

Quantitative Association Rules So far, we considered associations between boolean

variables (whether or not an item is present in a transaction). We now introduce the

problem of mining association rules in large relational tables containing both quantitative

and categorical attributes. An example of such an association might be \10% of married

people between age 50 and 60 have at least 2 cars". We deal with quantitative attributes

by �ne-partitioning the values of the attribute and then combining adjacent partitions

as necessary. We introduce measures of partial completeness which quantify the infor-

mation loss due to partitioning. A direct application of this technique can generate too

many similar rules. We extend the \greater-than-expected-value" interest measure to

identify the interesting rules in the output. Finally, we give an algorithm for mining

such quantitative association rules, and describe the results of using this approach on a

real-life dataset.

Sequential Patterns We introduce the problem of mining sequential patterns. Given

a database of sequences, where each sequence is a list of transactions ordered by transac-

tion time, and each transaction is a set of items, the problem is to discover all sequential

patterns with a user-speci�ed minimum support, where the support of a pattern is the
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number of data-sequences that contain the pattern. Thus sequential patterns are inter-

transaction patterns, while association rules are intra-transaction patterns. An example

of a sequential pattern is \2% of customers bought `Ringworld' in one transaction, fol-

lowed by `Foundation' and `Ringworld Engineers' in a later transaction".

We generalize the above problem formulation as follows. First, we add time con-

straints that specify a minimum and/or maximum time period between adjacent ele-

ments in a pattern. Second, we relax the restriction that the items in an element of a

sequential pattern must come from the same transaction, instead allowing the items to

be present in a set of transactions whose transaction-times are within a user-speci�ed

time window. Third, given a user-de�ned taxonomy (isa hierarchy) on items, we allow

sequential patterns to include items across all levels of the taxonomy.

We present GSP, an algorithm that discovers these generalized sequential patterns.

GSP scales linearly with the number of data-sequences, and has very good scale-up

properties with respect to the average data-sequence size.

1.3 Dissertation Applications

The problem of mining association rules was originally motivated by the decision support

problem faced by most large retail organizations [SAD+93]. Progress in bar-code tech-

nology has made it possible for retail organizations to collect and store massive amounts

of sales data, referred to as the basket data. A record in such data typically consists of the

transaction date and the items bought in the transaction. Successful organizations view

such databases as important pieces of the marketing infrastructure [Ass92]. They are

interested in instituting information-driven marketing processes, managed by database

technology, that enable marketers to develop and implement customized marketing pro-

grams and strategies [Ass90]. There are now a variety of applications for association rules
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and sequential patterns in multiple domains. We �rst describe market basket analysis,

the original motivation for mining association rules, followed by other applications.

Market Basket Analysis By mining basket data (transaction data), a retail store can

�nd associations between the sale of items. This information could be used in several

ways. For example, rules with \Maintenance Agreement" in the consequent may be

helpful for boosting Maintenance Agreement sales. Rules with \Home Electronics" may

indicate other products the store should stock up on if the store has a sale on Home

Electronics.

A related application is loss-leader analysis. Stores often sell some items at a loss

during a promotion, in the hope that customers would buy other items along with the

loss-leader. However, many customers may \cherry-pick" the item on sale. By mining

associations over the time period of the promotion as well as before the promotion, and

looking at the changes in the support and con�dence of rules involving the promotional

items , the store can determine whether or not \cherry-picking" occurred.

Item Placement Knowledge about what items are sold together is an useful input

for determining where to place items in a store. A closely related application is catalog

placement. Mail-order companies can use associations to help determine what items

should be placed on the same page of a catalog.

Attached Mailing Rather than sending the same catalog to everyone, direct market-

ing retailers can use associations and sequential patterns to customize the catalog based

on the items a person has bought. These customized catalogs may be much smaller, or

may be mailed less frequently, reducing mailing costs.
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Fraud Detection Insurance companies are interested in �nding groups of medical

service providers (doctors or clinics) who \ping-pong" patients between each other for

unnecessary tests. Given medical claims data, each patient can be mapped to a transac-

tion, and each doctor/clinic visited by a patient to an item in the transaction. The items

in an association rule now correspond to a set of providers, and the support of the rule

corresponds to the number of patients these providers have in common. The insurance

company can now investigate the claim records for sets of providers who have a large

number of common patients to determine if any fraudulent activity actually occurred.

Another application is detecting the use of wrong medical payment codes. For ex-

ample, insurance companies are interested in detecting \unbundling", where a set of

payment codes corresponding to the components of a medical procedure are used to

claim payment, rather than the code for the whole procedure. (The motivation is that

the sum of the payments for the component codes may be greater than the normal

payment for the procedure.) Associations between medical payment codes can also be

used to �nd sets of payment codes which are used frequently. See [NRV96] for a similar

application.

Medical Research A data-sequence may correspond to the symptoms or diseases

of a patient, with a transaction corresponding to the symptoms exhibited or diseases

diagnosed during a visit to the doctor. The patterns discovered using this data could be

used in disease research to help identify symptoms/diseases that precede certain diseases.

1.4 Dissertation Outline

Chapter 2 describes fast algorithms for the problem of mining association rules. Chap-

ter 3 generalizes the problem to incorporate taxonomies (isa hierarchies) on the data.
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Chapter 4 looks at associations over quantitative and categorical attributes. Chapter 5

introduces the problem of sequential patterns, and applies some of the earlier ideas to

this problem. Finally, Chapter 6 summarizes the dissertation and presents suggestions

for future work.
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Chapter 2

Fast Algorithms for Mining

Association Rules

2.1 Introduction

The problem of mining association rules over basket data was introduced in [AIS93b].

The input data consists of a set of transactions, where each transaction is a set of items.

An example of an association rule might be that 98% of customers that purchase tires and

auto accessories also get automotive services done. Finding all such rules is valuable for

cross-marketing and attached mailing applications. Other applications include catalog

design, add-on sales, store layout, and customer segmentation based on buying patterns.

The databases involved in these applications are very large. It is imperative, therefore,

to have fast algorithms for this task.

The following is a formal statement of the problem [AIS93b]: Let I = fi1; i2; : : : ; img

be a set of literals, called items. Let D be a set of transactions, where each transaction T

is a set of items such that T � I. Associated with each transaction is a unique identi�er,

called its TID. We say that a transaction T contains X, a set of some items in I, if

X � T . An association rule is an implication of the form X ) Y , where X � I, Y � I,

and X \ Y = ;. The rule X ) Y holds in the transaction set D with con�dence c if c%

of transactions in D that contain X also contain Y . The rule X ) Y has support s in

the transaction set D if s% of transactions in D contain X [Y . Our rules are somewhat

more general than in [AIS93b] in that we allow a consequent to have more than one item.

Given a set of transactions D, the problem of mining association rules is to generate
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all association rules that have support and con�dence greater than the user-speci�ed

minimum support (called minsup) and minimum con�dence (called minconf ) respec-

tively. Our discussion is neutral with respect to the representation of D. For example,

D could be a data �le, a relational table, or the result of a relational expression.

An algorithm for �nding all association rules, henceforth referred to as the AIS al-

gorithm, was presented in [AIS93b]. Another algorithm for this task, called the SETM

algorithm, has been proposed in [HS95]. In this chapter, we present two algorithms,

Apriori and AprioriTid, that di�er fundamentally from these algorithms. We present

experimental results, using both synthetic and real-life data, showing that the proposed

algorithms always outperform the earlier algorithms. The performance gap is shown to

increase with problem size, and ranges from a factor of three for small problems to more

than an order of magnitude for large problems. We then discuss how the best features of

Apriori and AprioriTid can be combined into a hybrid algorithm, called AprioriHybrid.

Experiments show that the AprioriHybrid has excellent scale-up properties, opening up

the feasibility of mining association rules over very large databases.

Problem Decomposition

The problem of discovering all association rules can be decomposed into two subproblems

[AIS93b]:

1. Find all sets of items (itemsets) that have transaction support above minimumsupport.

The support for an itemset is the number of transactions that contain the itemset.

Itemsets with minimum support are called frequent itemsets.1 In Section 2.2, we give

new algorithms, Apriori and AprioriTid, for solving this problem.

1In [AIS93b] itemsets with minimum support were called large itemsets. However, some readers
associated \large" with the number of items in the itemset, rather than its support. So we are switching
the terminology to frequent itemsets.
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2. Use the frequent itemsets to generate the desired rules. We give algorithms for this

problem in Section 2.3. The general idea is that if, say, ABCD and AB are frequent

itemsets, then we can determine if the rule AB ) CD holds by computing the ratio

conf = support(ABCD)/support(AB). If conf � minconf, then the rule holds. (The

rule will surely have minimum support because ABCD is frequent.)

Unlike [AIS93b], where rules were limited to only one item in the consequent, we allow

multiple items in the consequent. An example of such a rule might be that in 58% of

the cases, a person who orders a comforter also orders a 
at sheet, a �tted sheet, a

pillow case, and a ru�e. The algorithms in Section 2.3 generate such multi-consequent

rules.

In Section 2.4, we show the relative performance of the proposed Apriori and Apri-

oriTid algorithms against the AIS [AIS93b] and SETM [HS95] algorithms. To make the

chapter self-contained, we include an overview of the AIS and SETM algorithms in this

section. We also describe how the Apriori and AprioriTid algorithms can be combined

into a hybrid algorithm, AprioriHybrid, and demonstrate the scale-up properties of this

algorithm. We conclude by pointing out some related open problems in Section 2.6.

Related Work

The closest work in the machine learning literature is the KID3 algorithm presented

in [PS91]. If used for �nding all association rules, this algorithm will make as many

passes over the data as the number of combinations of items in the antecedent, which

is exponentially large. Related work in the database literature is the work on inferring

functional dependencies from data [Bit92] [MR87]. Functional dependencies are rules

requiring strict satisfaction. Consequently, having determined a dependency X ! A,

the algorithms in [Bit92] [MR87] consider any other dependency of the form X+Y ! A
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redundant and do not generate it. The association rules we consider are probabilistic

in nature. The presence of a rule X ! A does not necessarily mean that X + Y ! A

also holds because the latter may not have minimum support. Similarly, the presence

of rules X ! Y and Y ! Z does not necessarily mean that X ! Z holds because the

latter may not have minimum con�dence.

Mannila et al. [MTV94] independently came up with an idea similar to apriori

candidate generation. However, they counted support for the candidates by checking

every candidate against every transaction, rather than using the hash-tree (described

later in this chapter).

2.2 Discovering Frequent Itemsets

Algorithms for discovering frequent itemsets make multiple passes over the data. In

the �rst pass, we count the support of individual items and determine which of them

are frequent, i.e. have minimum support. In each subsequent pass, we start with a

seed set of itemsets found to be frequent in the previous pass. We use this seed set for

generating new potentially frequent itemsets, called candidate itemsets, and count the

actual support for these candidate itemsets during the pass over the data. At the end of

the pass, we determine which of the candidate itemsets are actually frequent, and they

become the seed for the next pass. This process continues until no new frequent itemsets

are found.

The Apriori and AprioriTid algorithms we propose di�er fundamentally from the AIS

[AIS93b] and SETM [HS95] algorithms in terms of which candidate itemsets are counted

in a pass and in the way that those candidates are generated. In both the AIS and SETM

algorithms (see Sections 2.4.1 and 2.4.2 for a review), candidate itemsets are generated

on-the-
y during the pass as data is being read. Speci�cally, after reading a transaction,
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it is determined which of the itemsets found frequent in the previous pass are present

in the transaction. New candidate itemsets are generated by extending these frequent

itemsets with other items in the transaction. However, as we will see, the disadvantage is

that this results in unnecessarily generating and counting too many candidate itemsets

that turn out to not have minimum support.

The Apriori and AprioriTid algorithms generate the candidate itemsets to be counted

in a pass by using only the itemsets found frequent in the previous pass { without

considering the transactions in the database. The basic intuition is that any subset of

a frequent itemset must be frequent. Therefore, the candidate itemsets having k items

can be generated by joining frequent itemsets having k�1 items, and deleting those that

contain any subset that is not frequent. This procedure results in generation of a much

smaller number of candidate itemsets.

The AprioriTid algorithm has the additional property that the database is not used at

all for counting the support of candidate itemsets after the �rst pass. Rather, an encoding

of the candidate itemsets used in the previous pass is employed for this purpose. In later

passes, the size of this encoding can become much smaller than the database, thus saving

much reading e�ort. We will explain these points in more detail when we describe the

algorithms.

Notation We assume that items in each transaction are kept sorted in their lexico-

graphic order. It is straightforward to adapt these algorithms to the case where the

database D is kept normalized and each database record is a <TID, item> pair, where

TID is the identi�er of the corresponding transaction.

We call the number of items in an itemset its size, and call an itemset of size k a

k-itemset. Items within an itemset are kept in lexicographic order. We use the notation
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k-itemset An itemset having k items.

Set of frequent k-itemsets (those with minimum support).
Lk Each member of this set has two �elds: i) itemset and ii) support count.

Set of candidate k-itemsets (potentially frequent itemsets).
Ck Each member of this set has two �elds: i) itemset and ii) support count.

Set of candidate k-itemsets when the TIDs of the generating transactions
Ck are kept associated with the candidates.

Table 1: Notation for Algorithms

c[1] � c[2] � : : : � c[k] to represent a k-itemset c consisting of items c[1]; c[2]; : : : c[k], where

c[1] < c[2] < : : : < c[k]. If c = X �Y and Y is an m-itemset, we also call Y an m-extension

of X. Associated with each itemset is a count �eld to store the support for this itemset.

The count �eld is initialized to zero when the itemset is �rst created.

We summarize in Table 1 the notation used in the algorithms. The set Ck is used by

AprioriTid and will be further discussed when we describe this algorithm.

2.2.1 Apriori Algorithm

Figure 1 gives the Apriori algorithm. The �rst pass of the algorithm simply counts

item occurrences to determine the frequent 1-itemsets. A subsequent pass, say pass k,

consists of two phases. First, the frequent itemsets Lk�1 found in the (k�1)th pass

are used to generate the candidate itemsets Ck, using the apriori candidate generation

function described below. Next, the database is scanned and the support of candidates

in Ck is counted. For fast counting, we need to e�ciently determine the candidates in

Ck that are contained in a given transaction T . We now describe candidate generation,

�nding the candidates which are subsets of a given transaction, and then discuss bu�er

management.
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L1 := ffrequent 1-itemsetsg;
k := 2; // k represents the pass number
while ( Lk�1 6= ; ) do begin

Ck := New candidates of size k generated from Lk�1;
forall transactions T 2 D do begin

Increment the count of all candidates in Ck that are contained in T .
end
Lk := All candidates in Ck with minimum support.
k := k + 1;

end

Answer :=
S
k Lk;

Figure 1: Apriori Algorithm

Apriori Candidate Generation

Given Lk�1, the set of all frequent (k�1)-itemsets, the algorithm returns a superset of

the set of all frequent k-itemsets. The function works as follows. First, in the join step,

we join Lk�1 with Lk�1:

insert into Ck

select p.item1, p.item2, ..., p.itemk�1, q.itemk�1

from Lk�1 p, Lk�1 q
where p.item1 = q.item1, : : :, p.itemk�2 = q.itemk�2, p.itemk�1 < q.itemk�1;

Next, in the prune step, we delete all itemsets c 2 Ck such that some (k�1)-subset of c
is not in Lk�1:

forall itemsets c 2 Ck do

forall (k�1)-subsets s of c do
if (s 62 Lk�1) then

delete c from Ck ;

Example Let L3 be ff1 2 3g, f1 2 4g, f1 3 4g, f1 3 5g, f2 3 4gg. After the join step,

C4 will be ff1 2 3 4g, f1 3 4 5g g. The prune step will delete the itemset f1 3 4 5g

because the itemset f1 4 5g is not in L3. We will then be left with only f1 2 3 4g in C4.

Contrast this candidate generation with the one used in the AIS and SETM algo-

rithms. In pass k of these algorithms (see Section 2.4 for details), a database transaction
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T is read and it is determined which of the frequent itemsets in Lk�1 are present in T .

Each of these frequent itemsets l is then extended with all those frequent items that

are present in T and occur later in the lexicographic ordering than any of the items in

l. Continuing with the previous example, consider a transaction f1 2 3 4 5g. In the

fourth pass, AIS and SETM will generate two candidates, f1 2 3 4g and f1 2 3 5g, by

extending the frequent itemset f1 2 3g. Similarly, an additional three candidate itemsets

will be generated by extending the other frequent itemsets in L3, leading to a total of

5 candidates for consideration in the fourth pass. Apriori, on the other hand, generates

and counts only one itemset, f1 3 4 5g, because it concludes a priori that the other

combinations cannot possibly have minimum support.

Correctness We need to show that Ck � Lk. Clearly, any subset of a frequent itemset

must also have minimum support. Hence, if we extended each itemset in Lk�1 with all

possible items and then deleted all those whose (k�1)-subsets were not in Lk�1, we would

be left with a superset of the itemsets in Lk.

The join is equivalent to extending Lk�1 with each item in the database and then

deleting those itemsets for which the (k�1)-itemset obtained by deleting the (k�1)th item

is not in Lk�1. The condition p.itemk�1 < q.itemk�1 simply ensures that no duplicates

are generated. Thus, after the join step, Ck � Lk. By similar reasoning, the prune step,

where we delete from Ck all itemsets whose (k�1)-subsets are not in Lk�1, also does not

delete any itemset that could be in Lk.

Variation: Counting Candidates of Multiple Sizes in One Pass Rather than

counting only candidates of size k in the kth pass, we can generate C 0
k+1, candidates of

size k+1, from Ck, and count them simultaneously. We use C 0
k+1 to denote candidates

generated from Ck and Ck+1 to denote candidates generated from Lk. Since Ck � Lk,
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completeness is maintained. However, C 0
k+1 will typically contain more candidates than

Ck+1 since Ck typically has more itemsets than Lk. This variation can pay o� in the

later passes when the cost of counting and keeping in memory additional C 0
k+1 � Ck+1

candidates becomes less than the cost of scanning the database.

Membership Test The prune step requires testing that all (k�1)-subsets of a newly

generated k-candidate-itemset are present in Lk�1. To make this membership test fast,

frequent itemsets are stored in a hash table.

Subset Function

Given a set of candidates Ck and a transaction T , we need to �nd all candidates that

are contained in T . We now describe data structures to make this operation e�cient.

Candidate itemsets Ck are stored in a hash-tree. A node of the hash-tree either

contains a list of itemsets (a leaf node) or a hash table (an interior node). In an interior

node, each bucket of the hash table points to another node. The root of the hash-tree is

de�ned to be at depth 1. An interior node at depth d points to nodes at depth d + 1.

Itemsets are stored in the leaves. When we add an itemset c, we start from the root

and go down the tree until we reach a leaf. At an interior node at depth d, we decide

which branch to follow by applying a hash function to the dth item of the itemset. (As

mentioned earlier, we assume the items in an itemset are in lexicographic order. Hence

we can treat the itemset as a list rather than a set.) All nodes are initially created as

leaf nodes. When the number of itemsets in a leaf node exceeds a speci�ed threshold,

the leaf node is converted to an interior node.

Starting from the root node, the subset function �nds all the candidates contained

in a transaction T as follows. If we are at a leaf, we �nd which of the itemsets in the

leaf are contained in T and add references to them to the answer set. If we are at an



19

{3 6}

0 1 2 3 4

0 1 2 3 4

{8 11}
{3 8}

{1 2}
{1 4}

{5 6}

Figure 2: Example of Hash Tree

interior node and we have reached it by hashing the item i, we hash on each item that

comes after i in T and recursively apply this procedure to the node in the corresponding

bucket. For the root node, we hash on every item in T .

Figure 2 shows an example of the hash tree, where the hash function is \mod 5", the

size of the hash table is 5, and the threshold for converting a list to an interior node is

3 itemsets. For a transaction f1 4g, buckets 1 and 4 will be checked at the �rst level.

Hence only the candidates f1 2g and f1 4g will be checked for this transaction.

To see why the subset function returns the desired set of references, consider what

happens at the root node. For any itemset c contained in transaction T , the �rst item of

c must be in T . At the root, by hashing on every item in T , we ensure that we only ignore

itemsets that start with an item not in T . Similar arguments apply at lower depths. The

only additional factor is that, since the items in any itemset are ordered, if we reach the

current node by hashing the item i, we only need to consider the items in T that occur

after i.

In the second-pass, we use a specialized implementation of the hash-tree. Since C2

is L1 �L1, we �rst generate a mapping from items to integers, such that large items are

mapped to contiguous integers and non-large items to 0. We now allocate an array of

jL1j pointers, where each element points to another array of up to jL1j elements. Each
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element of the latter array corresponds to a candidate in C2, and will contain the support

count for that candidate. The �rst array corresponds to the hash-table in the �rst level

of the hash-tree, and the set of second-level arrays to the hash-tables in the second level

of the hash-tree. This specialized structure has two advantages. First, it uses only 4

bytes of memory per candidate, since only the support count for the candidate is stored.

(We know that count[i][j] corresponds to candidate (i, j), and so we need not explicitly

store the items i and j with the count.) Second, we avoid the overhead of function calls

(apart from the mapping) since we can just do a two-level for-loop over each transaction.

If there isn't enough memory to generate this structure for all candidates, we generate

part of the structure and make multiple passes over the data.

If k is the size of a candidate itemset in the hash-tree, we can �nd in O(k) timewhether

the itemset is contained in a transaction by using a temporary bitmap to represent the

transaction. Each bit of the bitmap corresponds to an item, and the status of the bit

denotes whether or not the transaction contains that item. Thus we simply check the bit

corresponding to each item in the candidate to check whether the candidate is contained

in the transaction. This bitmap is created once for the hash-tree, and initialized and

reset for each transaction. This initialization takes O(size(transaction)) time for each

transaction.

Bu�er Management

In the candidate generation phase of pass k, we need storage for frequent itemsets Lk�1

and the candidate itemsets Ck. In the counting phase, we need storage for Ck and at

least one page to bu�er the database transactions.

First, assume that Lk�1 �ts in memory but that the set of candidates Ck does not.

The candidate generation function is modi�ed to generate as many candidates of Ck as
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will �t in the bu�er and the database is scanned to count the support of these candi-

dates. Frequent itemsets resulting from these candidates are written to disk, while those

candidates without minimum support are deleted. This procedure is repeated until all

of Ck has been counted.

If Lk�1 does not �t in memory either, we externally sort Lk�1. We bring into memory

a block of Lk�1 in which the �rst k� 2 items are the same. We now generate candidates

using this block. We keep reading blocks of Lk�1 and generating candidates until the

memory �lls up, and then make a pass over the data. This procedure is repeated until all

of Ck has been counted. Unfortunately, we can no longer prune those candidates whose

subsets are not in Lk�1, as the whole of Lk�1 is not available in memory.

2.2.2 AprioriTid Algorithm

The AprioriTid algorithm, shown in Figure 3, also uses the apriori candidate generation

function (given in Section 2.2.1) to determine the candidate itemsets before the pass

begins. The interesting feature of this algorithm is that the database D is not used for

counting support after the �rst pass. Rather, the set Ck is used for this purpose. Each

member of the set Ck is of the form < TID; fXkg >, where each Xk is a potentially fre-

quent k-itemset present in the transaction with identi�er TID. For k = 1, C1 corresponds

to the database D, although conceptually each item i is replaced by the itemset fig. For

k > 1, Ck is generated by the algorithm (step 10). The member of Ck corresponding

to transaction T is < t:TID, fc 2 Ck j c contained in tg>. If a transaction does not

contain any candidate k-itemset, then Ck will not have an entry for this transaction.

Thus, the number of entries in Ck may be smaller than the number of transactions in

the database, especially for large values of k. In addition, for large values of k, each

entry may be smaller than the corresponding transaction because very few candidates
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1) L1 := ffrequent 1-itemsetsg;
2) C1 := database D;
2a) k := 2; // k represents the pass number
3) while ( Lk�1 6= ; ) do begin
4) Ck := New candidates of size k generated from Lk�1;
5) Ck := ;;
6) forall entries T 2 Ck�1 do begin
7) // determine candidate itemsets in Ck contained in

// the transaction with identi�er T .TID
Ct := fc 2 Ck j (c� c[k]) 2 t:set-of-itemsets ^ (c� c[k�1]) 2 t.set-of-itemsetsg;

8) Increment the count of all candidates in Ct.
10) if (Ct 6= ;) then Ck += ht:TID; Cti;
11) end
12) Lk := All candidates in Ck with minimum support.
12a) k := k + 1;
13) end

14) Answer =
S
k Lk;

Figure 3: AprioriTid Algorithm

may be contained in the transaction. However, for small values for k, each entry may be

larger than the corresponding transaction because an entry in Ck includes all candidate

k-itemsets contained in the transaction. We further explore this trade-o� in Section 2.4.

In the rest of this section, we establish the correctness of the algorithm, give the data

structures used to implement the algorithm, and �nally discuss bu�er management.

Example Consider the database in Figure 4 and assume that minimum support is 2

transactions. Calling the apriori candidate generation function with L1 at step 4 gives

the candidate itemsets C2. In steps 6 through 10, we count the support of candidates

in C2 by iterating over the entries in C1 and generating C2. The �rst entry in C1 is f

f1g f3g f4g g, corresponding to transaction 100. The Ct at step 7 corresponding to this

entry T is f f1 3g g, because f1 3g is a member of C2 and both (f1 3g - f1g) and (f1

3g - f3g) are members of T .set-of-itemsets.
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Database

TID Items

100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

C1

TID Set-of-Itemsets

100 f f1g, f3g, f4g g
200 f f2g, f3g, f5g g
300 f f1g, f2g, f3g, f5g g
400 f f2g, f5g g

L1

Itemset Support

f1g 2
f2g 3
f3g 3
f5g 3

C2

Itemset

f1 2g
f1 3g
f1 5g
f2 3g
f2 5g
f3 5g

C2

TID Set-of-Itemsets

100 f f1 3g g
200 f f2 3g, f2 5g, f3 5g g
300 f f1 2g, f1 3g, f1 5g,

f2 3g, f2 5g, f3 5g g
400 f f2 5g g

L2

Itemset Support

f1 3g 2
f2 3g 2
f2 5g 3
f3 5g 2

C3

Itemset

f2 3 5g

C3

TID Set-of-Itemsets

200 f f2 3 5g g
300 f f2 3 5g g

L3

Itemset Support

f2 3 5g 2

Figure 4: Example for AprioriTid Algorithm

Calling the apriori candidate generation function with L2 gives C3. Making a pass

over the data with C2 and C3 generates C3. Note that there is no entry in C3 for the

transactions with TIDs 100 and 400, since they do not contain any of the itemsets in

C3. The candidate f2 3 5g in C3 turns out to be frequent and is the only member of L3.

When we generate C4 using L3, it turns out to be empty, and we terminate.

Correctness

Rather than using the database transactions, AprioriTid uses the entries in Ck to count

the support of candidates in Ck. To simplify the proof, we assume that in step 10 of

AprioriTid, we always add <t.TID,Ct> to Ck, rather than adding an entry only when

Ct is non-empty. For correctness, we need to establish that the set Ct generated in step

7 in the kth pass is the same as the set of candidate k-itemsets in Ck contained in the

transaction with identi�er T .TID.
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We say that the set Ck is complete if 8t 2 Ck, T .set-of-itemsets includes all frequent

k-itemsets contained in the transaction with identi�er T .TID. We say that the set Ck is

correct if 8t 2 Ck, T .set-of-itemsets does not include any k-itemset not contained in the

transaction with identi�er T .TID. The set Lk is correct if it is the same as the set of all

frequent k-itemsets. We say that the set Ct generated in step 7 in the kth pass is correct

if it is the same as the set of candidate k-itemsets in Ck contained in the transaction

with identi�er T .TID.

Lemma 1 8k > 1, if Ck�1 is correct and complete and Lk�1 is correct, then the set Ct

generated in step 7 in the kth pass is the same as the set of candidate k-itemsets in Ck

contained in the transaction with identi�er T .TID.

Proof: By simple rewriting, a candidate itemset c = c[1] � c[2] � : : : � c[k] is present in

transaction T .TID if and only if both c1 = (c � c[k]) and c2 = (c � c[k�1]) are in

transaction T .TID. Since Ck was obtained by calling the apriori candidate generation

function with Lk�1, all subsets of c 2 Ck must be frequent. So, c1 and c2 must be frequent

itemsets. Thus, if c 2 Ck is contained in transaction T .TID, c1 and c2 must be members

of T .set-of-itemsets since Ck�1 is complete. Hence c will be a member of Ct. Since Ck�1

is correct, if c1 (c2) is not present in transaction T .TID then c1 (c2) is not contained in

T:set-of-itemsets. Hence, if c 2 Ck is not contained in transaction T .TID, c will not be

a member of Ct. 2

Lemma 2 8k > 1, if Lk�1 is correct and the set Ct generated in step 7 in the kth pass

is the same as the set of candidate k-itemsets in Ck contained in the transaction with

identi�er T .TID, then the set Ck is correct and complete.

Proof: Since the apriori candidate generation function guarantees that Ck � Lk, the set

Ct includes all frequent k-itemsets contained in T .TID. These are added in step 10 to Ck
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and hence Ck is complete. Since Ct only includes itemsets contained in the transaction

T .TID, and only itemsets in Ct are added to Ck, it follows that Ck is correct. 2

Theorem 1 8k > 1, the set Ct generated in step 7 in the kth pass is the same as the

set of candidate k-itemsets in Ck contained in the transaction with identi�er T .TID.

Proof: We �rst prove by induction on k that the set Ck is correct and complete and

that Lk is correct for all k � 1. For k = 1, this is trivially true since C1 corresponds to

the database D. By de�nition, L1 is also correct. Assume this holds for k = n. From

Lemma 1, the set Ct generated in step 7 in the (n+1)th pass will consist of exactly those

itemsets in Cn+1 contained in the transaction with identi�er T .TID. Since the apriori

candidate generation function guarantees that Cn+1 � Ln+1 and Ct is correct, Ln+1 will

be correct. From Lemma 2, the set Cn+1 will be correct and complete.

Since Ck is correct and complete and Lk correct for all k � 1, the theorem follows

directly from Lemma 1. 2

Data Structures

We assign each candidate itemset a unique number, called its ID, at the time the candi-

date is generated. (We simply increment a counter to get the ID.) Each set of candidate

itemsets Ck is kept in an array indexed by the IDs of the itemsets in Ck. A member of

Ck is now of the form < TID; fIDg >. Each Ck is stored in a sequential structure.

The apriori candidate generation function generates a candidate k-itemset ck by join-

ing two frequent (k�1)-itemsets. We maintain two additional �elds for each candidate

itemset: i) generators and ii) extensions. The generators �eld of a candidate itemset ck

stores the IDs of the two frequent (k�1)-itemsets whose join generated ck. The extensions

�eld of an itemset ck stores the IDs of all the (k+1)-candidates that are extensions of

ck. Thus, when a candidate ck is generated by joining l1k�1 and l2k�1, we save the IDs of
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l1k�1 and l2k�1 in the generators �eld for ck. At the same time, the ID of ck is added to

the extensions �eld of l1k�1.

We now describe how Step 7 of Figure 3 is implemented using the above data struc-

tures. Recall that the T .set-of-itemsets �eld of an entry T in Ck�1 gives the IDs of all

(k�1)-candidates contained in transaction T .TID. For each such candidate ck�1 the ex-

tensions �eld gives Tk, the set of IDs of all the candidate k-itemsets that are extensions

of ck�1. For each ck in Tk, the generators �eld gives the IDs of the two itemsets that

generated ck. If these itemsets are present in the entry for T .set-of-itemsets, we can

conclude that ck is present in transaction T .TID, and add ck to Ct.

We actually need to store only l2k�1 in the generators �eld, since we reached ck starting

from the ID of l1k�1 in T . We omitted this optimization in the above description to sim-

plify exposition. Given an ID and the data structures above, we can �nd the associated

candidate itemset in constant time. We can also �nd in constant time whether or not

an ID is present in the T .set-of-itemsets �eld by using a temporary bitmap. Each bit of

the bitmap corresponds to an ID in Ck. This bitmap is created once at the beginning of

the pass and is reinitialized for each entry T of Ck.

Bu�er Management

In the kth pass, AprioriTid needs memory for Lk�1 and Ck during candidate generation.

During the counting phase, it needs memory for Ck�1, Ck, and a page each for Ck�1 and

Ck. Note that the entries in Ck�1 are needed sequentially and that the entries in Ck can

be written to disk as they are generated.

At the time of candidate generation, when we join Lk�1 with itself, we �ll up roughly

half the bu�er with candidates. This allows us to keep the relevant portions of both

Ck and Ck�1 in memory during the counting phase. In addition, we ensure that all
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candidates with the same �rst (k�1) items are generated at the same time.

The computation is now e�ectively partitioned because none of the candidates in

memory that turn out to frequent at the end of the pass will join with any of the

candidates not yet generated to derive potentially frequent itemsets. Hence we can

assume that the candidates in memory are the only candidates in Ck and �nd all frequent

itemsets that are extensions of candidates in Ck by running the algorithm to completion.

This may cause further partitioning of the computation downstream. Having thus run

the algorithm to completion, we return to Lk�1, generate some more candidates in Ck,

count them, and so on. Note that the prune step of the apriori candidate generation

function cannot be applied after partitioning because we do not know all the frequent

k-itemsets.

When Lk does not �t in memory, we need to externally sort Lk, as in the bu�er

management scheme used for Apriori.

2.3 Discovering Rules

The association rules that we consider here are somewhat more general than in [AIS93b]

in that we allow a consequent to have more than one item; rules in [AIS93b] were limited

to single item consequents. We �rst give a straightforward generalization of the algorithm

in [AIS93b] and then present a faster algorithm.

Basic Algorithm To generate rules, for every frequent itemset l, we �nd all non-empty

subsets of l. For every such subset a, we output a rule of the form a) (l�a) if the ratio

of support(l) to support(a) is at least minconf. We consider all subsets of l to generate

rules with multiple consequents. Since the frequent itemsets are stored in hash tables,

the support counts for the subset itemsets can be found e�ciently.
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// Simple Algorithm
forall frequent itemsets lk, k � 2 do

call genrules(lk , lk);

// The genrules generates all valid rules ~a) (lk � ~a), for all ~a � am
procedure genrules(lk: frequent k-itemset, am: frequent m-itemset)
1) A := f(m�1)-itemsets am�1 j am�1 � amg;
2) forall am�1 2 A do begin

3) conf := support(lk)/support(am�1);
4) if (conf � minconf) then begin

7) output the rule am�1 ) (lk � am�1), with con�dence = conf
and support = support(lk);

8) if (m� 1 > 1) then
9) call genrules(lk , am�1); // to generate rules with subsets

// of am�1 as the antecedents
10) end

11)end

Figure 5: Generating Rules: Simple Algorithm

We can improve the above procedure by generating the subsets of a frequent itemset in

a recursive depth-�rst fashion. For example, given an itemset ABCD, we �rst consider

the subset ABC, then AB, etc. Then if a subset a of a frequent itemset l does not

generate a rule, the subsets of a need not be considered for generating rules using l. For

example, if ABC ) D does not have enough con�dence, we need not check whether

AB ) CD holds. We do not miss any rules because the support of any subset ~a of a

must be as great as the support of a. Therefore, the con�dence of the rule ~a ) (l � ~a)

cannot be more than the con�dence of a ) (l � a). Hence, if a did not yield a rule

involving all the items in l with a as the antecedent, neither will ~a. Figure 5 shows an

algorithm that embodies these ideas.

A Faster Algorithm We showed earlier that if a ) (l � a) does not hold, neither

does ~a ) (l � ~a) for any ~a � a. By rewriting, it follows that for a rule (l � c) ) c to
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hold, all rules of the form (l � ~c)) ~c must also hold, where ~c is a non-empty subset of

c. For example, if the rule AB ) CD holds, then the rules ABC ) D and ABD ) C

must also hold.

Consider the above property, which states that for a given frequent itemset, if a rule

with consequent c holds then so do rules with consequents that are subsets of c. This is

similar to the property that if an itemset is frequent then so are all its subsets. From a

frequent itemset l, therefore, we �rst generate all rules with one item in the consequent.

We then use the consequents of these rules and the apriori candidate generation function

in Section 2.2.1 to generate all possible consequents with two items that can appear in a

rule generated from l, etc. An algorithm using this idea is given in Figure 6. The rules

having one-item consequents in step 2 of this algorithm can be found by using a modi�ed

version of the preceding genrules function in which steps 8 and 9 are deleted to avoid

the recursive call.

Example Consider a frequent itemset ABCDE. Assume that ACDE ) B and

ABCE) D are the only one-item consequent rules derived from this itemset that have

the minimum con�dence. If we use the simple algorithm, the recursive call

genrules(ABCDE, ACDE) will test if the two-item consequent rules ACD ) BE,

ADE ) BC, CDE ) BA, and ACE ) BD hold. The �rst of these rules cannot hold,

because E � BE, and ABCD) E does not have minimum con�dence. The second and

third rules cannot hold for similar reasons. The call genrules(ABCDE, ABCE) will test

if the rules ABC ) DE, ABE ) DC, BCE ) DA and ACE ) BD hold, and will

�nd that the �rst three of these rules do not hold. In fact, the only two-item consequent

rule that can possibly hold is ACE ) BD, where B and D are the consequents in the

valid one-item consequent rules. This is the only rule that will be tested by the faster
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// Faster Algorithm
1) forall frequent k-itemsets lk, k � 2 do begin
2) H1 = f consequents of rules derived from lk with one item in the consequent g;
3) call ap-genrules(lk , H1);
4) end

procedure ap-genrules(lk : frequent k-itemset, Hm: set of m-item consequents)
if (k > m+ 1) then begin

Hm+1 := result of calling the apriori candidate generation function with Hm;
forall hm+1 2 Hm+1 do begin

conf := support(lk)/support(lk � hm+1);
if (conf � minconf) then

output the rule (lk � hm+1)) hm+1 with con�dence = conf
and support = support(lk);

else
delete hm+1 from Hm+1;

end
call ap-genrules(lk , Hm+1);

end

Figure 6: Generating Rules: Faster Algorithm

algorithm.

2.4 Performance Evaluation

To assess the relative performance of the algorithms for discovering frequent itemsets, we

performed several experiments on an IBM RS/6000 530H workstation with a CPU clock

rate of 33 MHz, 64 MB of main memory, and running AIX 3.2. The data resided in the

AIX �le system and was stored on a 2GB SCSI 3.5" drive, with a measured sequential

throughput of about 2 MB/second.

We �rst give an overview of the AIS [AIS93b] and SETM [HS95] algorithms against

which we compare the performance of the Apriori and AprioriTid algorithms. We then

describe the synthetic datasets used in the performance evaluation and show the perfor-

mance results. Next, we show the performance results for three real-life datasets obtained
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from a retail and a direct mail company. Finally, we describe how the best performance

features of Apriori and AprioriTid can be combined into an AprioriHybrid algorithm and

demonstrate its scale-up properties.

2.4.1 Overview of the AIS Algorithm

Figure 7 summarizes the essence of the AIS algorithm (see [AIS93b] for further details).

Candidate itemsets are generated and counted on-the-
y as the database is scanned.

After reading a transaction, it is determined which of the itemsets that were found to be

frequent in the previous pass are contained in this transaction (step 5). New candidate

itemsets are generated by extending these frequent itemsets with other items in the

transaction (step 7). A frequent itemset l is extended with only those items that are

frequent and occur later than any of the items in l in the lexicographic ordering of items.

The candidates generated from a transaction are added to the set of candidate itemsets

maintained for the pass, or the counts of the corresponding entries are increased if they

were created by an earlier transaction (step 9).

Data Structures The data structures required for maintaining frequent and candidate

itemsets were not speci�ed in [AIS93b]. We store the frequent itemsets in a dynamic

multi-level hash table to make the subset operation in step 5 fast, using the algorithm

described in Section 2.2.1. Candidate itemsets are kept in a hash table associated with the

respective frequent itemsets from which they originate in order to make the membership

test in step 9 fast.

Bu�er Management When a newly generated candidate itemset causes the bu�er to

over
ow, we discard from memory the corresponding frequent itemset and all candidate

itemsets generated from it. This reclamation procedure is executed as often as necessary
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1) L1 := ffrequent 1-itemsetsg;
1a) k := 2; // k represents the pass number
2) while ( Lk�1 6= ; ) do begin

3) Ck := ;;
4) forall transactions T 2 D do begin

5) Lt := Members of Lk�1 that are contained in T ;
6) forall frequent itemsets lt 2 Lt do begin
7) Ct := 1-extensions of lt contained in T ; // Candidates contained in T

8) forall candidates c 2 Ct do
9) if (c 2 Ck) then

add 1 to the count of c in the corresponding entry in Ck

else

add c to Ck with a count of 1;
10) end

11) Lk := All candidates in Ck with minimum support.
11a) k := k + 1;
12) end
13) Answer :=

S
k Lk;

Figure 7: AIS Algorithm

during a pass. The frequent itemsets discarded in a pass are extended in the next pass.

This technique is a simpli�ed version of the bu�er management scheme presented in

[AIS93b].

2.4.2 Overview of the SETM Algorithm

The SETM algorithm [HS95] was motivated by the desire to use SQL to compute frequent

itemsets. Our description of this algorithm in Figure 8 uses the same notation as used

for the other algorithms, but is functionally identical to the SETM algorithm presented

in [HS95]. Ck (Lk) in Figure 8 represents the set of candidate (frequent) itemsets in

which the TIDs of the generating transactions have been associated with the itemsets.

Each member of these sets is of the form < TID; itemset>.

Like AIS, the SETM algorithm also generates candidates on-the-
y based on trans-

actions read from the database. It thus generates and counts every candidate itemset
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that the AIS algorithm generates. However, to use the standard SQL join operation for

candidate generation, SETM separates candidate generation from counting. It saves a

copy of the candidate itemset together with the TID of the generating transaction in a

sequential structure (step 9). At the end of the pass, the support count of candidate

itemsets is determined by sorting (step 12) and aggregating this sequential structure

(step 13).

SETM remembers the TIDs of the generating transactions with the candidate item-

sets. To avoid needing a subset operation, it uses this information to determine the

frequent itemsets contained in the transaction read (step 6). Lk � Ck and is obtained

by deleting those candidates that do not have minimum support (step 13). Assuming

that the database is sorted in TID order, SETM can easily �nd the frequent itemsets

contained in a transaction in the next pass by sorting Lk on TID (step 15). In fact, it

needs to visit every member of Lk only once in the TID order, and the candidate gener-

ation in steps 5 through 11 can be performed using the relational merge-join operation

[HS95].

The disadvantage of this approach is mainly due to the size of candidate sets Ck.

For each candidate itemset, the candidate set now has as many entries as the number of

transactions in which the candidate itemset is present. Moreover, when we are ready to

count the support for candidate itemsets at the end of the pass, Ck is in the wrong order

and needs to be sorted on itemsets (step 12). After counting and pruning out candidate

itemsets that do not have minimum support, the resulting set Lk needs another sort on

TID (step 15) before it can be used for generating candidates in the next pass.

Bu�er Management The performance of the SETM algorithm critically depends on

the size of the set Ck relative to the size of memory. If Ck �ts in memory, the two sorting
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1) L1 := ffrequent 1-itemsetsg;
2) L1 := fFrequent 1-itemsets together with the TIDs in which they appear,

sorted on TIDg;
2a) k := 2; // k represents the pass number
3) while ( Lk�1 6= ; ) do begin

4) Ck := ;;
5) forall transactions T 2 D do begin
6) Lt := fl 2 Lk�1 j l:TID = t:TIDg; // Frequent (k�1)-itemsets contained in T

7) forall frequent itemsets lt 2 Lt do begin
8) Ct := 1-extensions of lt contained in T ; // Candidates in T

9) Ck += f< t:TID; c > j c 2 Ctg;
10) end

11) end
12) sort Ck on itemsets;
13) delete all itemsets c 2 Ck for which c.count < minsup giving Lk;
14) Lk := f< l.itemset, count of l in Lk > j l 2 Lkg; // Combined with step 13
15) sort Lk on TID;
15a) k := k + 1;
16) end

17) Answer :=
S
k Lk;

Figure 8: SETM Algorithm
.
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steps can be performed using an in-memory sort. In [HS95], Ck was assumed to �t in

main memory and bu�er management was not discussed.

If Ck is too large to �t in memory, we write the entries in Ck to disk in FIFO order

when the bu�er allocated to the candidate itemsets �lls up, as these entries are not

required until the end of the pass. However, Ck now requires two external sorts.

2.4.3 Synthetic Data Generation

We generated synthetic transactions to evaluate the performance of the algorithms over

a large range of data characteristics. These transactions mimic the transactions in the

retailing environment. Our model of the \real" world is that people tend to buy sets of

items together. Each such set is potentially a maximal frequent itemset. An example of

such a set might be sheets, pillow case, comforter, and ru�es. However, some people may

buy only some of the items from such a maximal set. For instance, some people might

buy only sheets and pillow case, and some might buy only sheets. A transaction may

contain more than one frequent itemset. For example, a customer might place an order

for a dress and jacket when ordering sheets and pillow cases, where the dress and jacket

together form another frequent itemset. Transaction sizes are typically clustered around

a mean and a few transactions have many items. Typical sizes of maximal frequent

itemsets are also clustered around a mean, with a few maximal frequent itemsets having

a large number of items.

To create a dataset, our synthetic data generation program takes the parameters

shown in Table 2.

We �rst determine the size of the next transaction. The size is picked from a Poisson

distribution with mean � equal to jT j. Note that if each item is chosen with the same

probability p, and there are N items, the expected size of a transaction is given by
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jDj Number of transactions
jT j Average size of the transactions
jI j Average size of the maximal potentially frequent itemsets
jIj Number of maximal potentially frequent itemsets
N Number of items

Table 2: Parameters

a binomial distribution with parameters N and p, and is approximated by a Poisson

distribution with mean Np.

We then assign items to the transaction. Each transaction is assigned a series of

potentially frequent itemsets. If the frequent itemset on hand does not �t in the trans-

action, the itemset is put in the transaction anyway in half the cases, and the itemset is

moved to the next transaction the rest of the cases.

Frequent itemsets are chosen from a set I of such itemsets. The number of itemsets

in I is set to jIj. There is an inverse relationship between jIj and the average support

for potentially frequent itemsets. An itemset in I is generated by �rst picking the size

of the itemset from a Poisson distribution with mean � equal to jIj. Items in the �rst

itemset are chosen randomly. To model the phenomenon that frequent itemsets often

have common items, some fraction of items in subsequent itemsets are chosen from the

previous itemset generated. We use an exponentially distributed random variable with

mean equal to the correlation level to decide this fraction for each itemset. The remaining

items are picked at random. In the datasets used in the experiments, the correlation level

was set to 0.5. We ran some experiments with the correlation level set to 0.25 and 0.75

but did not �nd much di�erence in the nature of our performance results.

Each itemset in I has a weight associated with it, which corresponds to the probability

that this itemset will be picked. This weight is picked from an exponential distribution

with unit mean, and is then normalized so that the sum of the weights for all the itemsets

in I is 1. The next itemset to be put in the transaction is chosen from I by tossing an
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Name jT j jI j jDj Size in Megabytes

T5.I2.D100K 5 2 100K 2.4

T10.I2.D100K 10 2 100K 4.4
T10.I4.D100K 10 4 100K

T20.I2.D100K 20 2 100K 8.4
T20.I4.D100K 20 4 100K
T20.I6.D100K 20 6 100K

Table 3: Parameter settings (Synthetic datasets)

jIj-sided weighted coin, where the weight for a side is the probability of picking the

associated itemset.

To model the phenomenon that all the items in a frequent itemset are not always

bought together, we assign each itemset in I a corruption level c. When adding an itemset

to a transaction, we keep dropping an item from the itemset as long as a uniformly

distributed random number between 0 and 1 is less than c. Thus for an itemset of size l,

we will add l items to the transaction 1� c of the time, l� 1 items c(1� c) of the time,

l � 2 items c2(1 � c) of the time, etc. The corruption level for an itemset is �xed and is

obtained from a normal distribution with mean 0.5 and variance 0.1.

We generated datasets by setting N = 1000 and jIj = 2000. We chose 3 values for

jT j: 5, 10, and 20. We also chose 3 values for jIj: 2, 4, and 6. The number of transactions

was to set to 100,000 because, as we will see in Section 2.4.4, SETM could not be run for

larger values. However, for our scale-up experiments, we generated datasets with up to

10 million transactions (838MB for jT j = 20). Table 3 summarizes the dataset parameter

settings. For the same jT j and jDj values, the size of datasets in megabytes were roughly

equal for the di�erent values of jIj.

2.4.4 Experiments with Synthetic Data

Figure 9 shows the execution times for the six synthetic datasets given in Table 3 for

decreasing values of minimumsupport. As the minimumsupport decreases, the execution
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Figure 9: Execution times: Synthetic Data
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Dataset Algorithm Minimum Support
2.0% 1.5% 1.0% 0.75% 0.5%

T10.I2.D100K SETM 74 161 838 1262 1878
Apriori 4.4 5.3 11.0 14.5 15.3

T10.I4.D100K SETM 41 91 659 929 1639
Apriori 3.8 4.8 11.2 17.4 19.3

Table 4: Execution times in seconds for SETM

times of all the algorithms increase because of increases in the total number of candidate

and frequent itemsets.

For SETM, we have only plotted the execution times for the dataset T5.I2.D100K in

Figure 9. The execution times for SETM for the two datasets with an average transaction

size of 10 are given in Table 4. We did not plot the execution times in Table 4 on the

corresponding graphs because they are too large compared to the execution times of the

other algorithms. For the three datasets with transaction sizes of 20, SETM took too

long to execute and we aborted those runs as the trends were clear. Clearly, Apriori

beats SETM by more than an order of magnitude for large datasets.

Apriori beats AIS for all problem sizes, by factors ranging from 2 for high minimum

support to more than an order of magnitude for low levels of support. AIS always did

considerably better than SETM. For small problems, AprioriTid did about as well as

Apriori, but performance degraded to about twice as slow for large problems.

Apriori and AIS were always CPU-bound, since they did sequential scans of the data

and the Unix �le system was able to prefetch pages. AprioriTid was CPU-bound for

small problems, but IO-bound for large problems.

2.4.5 Explanation of the Relative Performance

To explain these performance trends, we show in Figure 10 the sizes of the frequent and

candidate sets in di�erent passes for the T10.I4.D100K dataset for the minimum support
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Figure 10: Sizes of the frequent and candidate sets (T10.I4.D100K, minsup = 0.75%)

of 0.75%. Note that the Y-axis in this graph has a log scale.

Apriori candidate generation generates dramatically fewer candidates than on-the-
y

candidate generation after the second pass. For the second pass, the number of candidates

generated for both is nearly identical. For Apriori, C2 is really a cross-product of L1 with

L1. For the older algorithms, we added the optimization that a frequent itemsets are

only extended with frequent item to generate a candidate. (Without this optimization,

the number of candidates would be much higher for these algorithms even during the

second pass). Since the on-the-
y methods only count pairs that actually appear in the

data, the number of candidates with this optimization should in fact be slightly less than

for Apriori during the second pass. However, nearly all combinations of frequent items

appear in large datasets.

The fundamental problem with the SETM algorithm is the size of its Ck sets. Recall

that the size of the set Ck is given by
P
candidate itemsets c support-count(c). Thus, the

sets Ck are roughly S times bigger than the corresponding Ck sets, where S is the average

support count of the candidate itemsets. Unless the problem size is very small, the Ck

sets have to be written to disk, and externally sorted twice, causing the SETM algorithm
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to perform poorly.2 This explains the jump in time for SETM in Table 4 when going from

1.5% support to 1.0% support for datasets with transaction size 10. The largest dataset

in the scale-up experiments for SETM in [HS95] was still small enough that Ck could

�t in memory; hence they did not encounter this jump in execution time. Note that for

the same minimum support, the support count for candidate itemsets increases linearly

with the number of transactions. Thus, as we increase the number of transactions for

the same values of jT j and jIj, though the size of Ck does not change, the size of Ck goes

up linearly. Thus, for datasets with more transactions, the performance gap between

SETM and the other algorithms will become even larger.

The problem with AIS is that it generates too many candidates that later turn out not

to have minimum support, causing it to waste too much e�ort. Apriori also counts too

many sets without minimumsupport in the second pass. However, this wastage decreases

dramatically from the third pass onward. Note that for the example in Figure 10, after

pass 3, almost every candidate itemset counted by Apriori turns out to be a frequent set.

AprioriTid also has the problem of SETM that Ck tends to be large. However, the

apriori candidate generation used by AprioriTid generates signi�cantly fewer candidates

than the transaction-based candidate generation used by SETM. As a result, the Ck of

AprioriTid has fewer entries than that of SETM. AprioriTid is also able to use a single

word (ID) to store a candidate rather than requiring as many words as the number of

items in the candidate.3 In addition, unlike SETM, AprioriTid does not have to sort Ck.

2The cost of external sorting in SETM can be reduced somewhat as follows. Before writing out
entries in Ck to disk, we can sort them on itemsets using an internal sorting procedure, and write them
as sorted runs. These sorted runs can then be merged to obtain support counts. However, given the
poor performance of SETM, we do not expect this optimization to a�ect the algorithm choice.

3For SETM to use IDs, it would have to maintain two additional in-memory data structures: a hash
table to �nd out whether a candidate has been generated previously, and a mapping from the IDs to
candidates. However, this would destroy the set-oriented nature of the algorithm. Also, once we have
the hash table which gives us the IDs of candidates, we might as well count them at the same time and
avoid the two external sorts. We experimented with this variant of SETM as well and found that, while
it did better than SETM, it still performed much worse than Apriori or AprioriTid.
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Thus, AprioriTid does not su�er as much as SETM from maintaining Ck.

AprioriTid has the nice feature that it replaces a pass over the original dataset by a

pass over the set Ck. Hence, AprioriTid is very e�ective in later passes when the size of

Ck becomes small compared to the size of the database. Thus, we �nd that AprioriTid

beats Apriori when its Ck sets can �t in memory and the distribution of the frequent

itemsets has a long tail. When Ck doesn't �t in memory, there is a jump in the execution

time for AprioriTid, such as when going from 0.75% to 0.5% for datasets with transaction

size 10 in Figure 9 (T10.I4.D100K). In this region, Apriori starts beating AprioriTid.

2.4.6 Reality Check

To con�rm the relative performance trends we observed using synthetic data, we exper-

imented with three real-life datasets: a sales transactions dataset obtained from a retail

chain and two customer-order datasets obtained from a mail order company. We present

the results of these experiments below.

Retail Sales Data The data from the retail chain consists of the sales transactions

from one store over a short period of time. A transaction contains the names of the

departments from which a customer bought a product in a visit to the store. There

are a total of 63 items, representing departments. There are 46,873 transactions with an

average size of 2.47. The size of the dataset is very small, only 0.65MB. Some performance

results for this dataset were reported in [HS95].

Figure 11 shows the execution times of the four algorithms.4 The Ck sets for both

SETM and AprioriTid �t in memory for this dataset. Apriori and AprioriTid are roughly

4The execution times for SETM in this �gure are a little higher compared to those reported in [HS95].
The timings in [HS95] were obtained on a RS/6000 350 processor, whereas our experiments have been
run on a slower RS/6000 530H processor. The execution time for 1% support for AIS is lower than that
reported in [AIS93b] because of improvements in the data structures for storing frequent and candidate
itemsets.
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Figure 11: Execution times: Retail sales data

three times as fast as AIS and four times faster than SETM.

Mail Order Data A transaction in the �rst dataset from the mail order company

consists of items ordered by a customer in a single mail order. There are a total of 15836

items. The average size of a transaction is 2.62 items and there are a total of 2.9 million

transactions. The size of this dataset is 42 MB. A transaction in the second dataset

consists of all the items ordered by a customer from the company in all orders together.

Again, there are a total of 15836 items, but the average size of a transaction is now 31

items and there are a total of 213,972 transactions. The size of this dataset is 27 MB.

We will refer to these datasets as M.order and M.cust respectively.

The execution times for these two datasets are shown in Figures 12 and 13 respec-

tively. For both datasets, AprioriTid is initially comparable to Apriori but becomes up

to twice as slow for lower supports. For M.order, Apriori outperforms AIS by a factor

of 2 to 6 and beats SETM by a factor of about 15. For M.cust, Apriori beats AIS by

a factor of 3 to 30. SETM had to be aborted (after taking 20 times the time Apriori

took to complete) because, even for 2% support, the set C2 became larger than the disk

capacity.
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Figure 13: Execution times: M.cust

2.4.7 AprioriHybrid Algorithm

It is not necessary to use the same algorithm in all the passes over data. Figure 14

shows the execution times for Apriori and AprioriTid for di�erent passes over the dataset

T10.I4.D100K. In the earlier passes, Apriori does better than AprioriTid. However, Apri-

oriTid beats Apriori in later passes. We observed similar relative behavior for the other

datasets, the reason for which is as follows. Apriori and AprioriTid use the same can-

didate generation procedure and therefore count the same itemsets. In the later passes,

the number of candidate itemsets reduces (see the size of Ck for Apriori and AprioriTid

in Figure 10). However, Apriori still examines every transaction in the database. On

the other hand, rather than scanning the database, AprioriTid scans Ck for obtaining

support counts, and the size of Ck has become smaller than the size of the database.

When the Ck sets can �t in memory, we do not even incur the cost of writing them to

disk.

Based on these observations, we can design a hybrid algorithm, which we call Apri-

oriHybrid, that uses Apriori in the initial passes and switches to AprioriTid when it

expects that the set Ck at the end of the pass will �t in memory. We use the follow-

ing heuristic to estimate if Ck would �t in memory in the next pass. At the end of
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the current pass, we have the counts of the candidates in Ck. From this, we estimate

what the size of Ck would have been if it had been generated. This size, in words, is

(
P
candidates c 2 Ck

support(c) + number of transactions). If Ck in this pass was small

enough to �t in memory, and there were fewer frequent candidates in the current pass

than the previous pass, we switch to AprioriTid. The latter condition is added to avoid

switching when Ck in the current pass �ts in memory but Ck in the next pass may not.

Switching from Apriori to AprioriTid does involve a cost. Assume that we decide to

switch from Apriori to AprioriTid at the end of the kth pass. In the (k+1)th pass, after

�nding the candidate itemsets contained in a transaction, we will also have to add their

IDs to Ck+1 (see the description of AprioriTid in Section 2.2.2). Thus there is an extra

cost incurred in this pass relative to just running Apriori. It is only in the (k+2)th pass

that we actually start running AprioriTid. Thus, if there are no frequent (k+1)-itemsets,

or no (k+2)-candidates, we will incur the cost of switching without getting any of the

savings of using AprioriTid.

Figure 15 shows the performance of AprioriHybrid relative to Apriori and AprioriTid

for large datasets. AprioriHybrid performs better than Apriori in almost all cases. For

T10.I2.D100K with 1.5% support, AprioriHybrid does a little worse than Apriori since the
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pass in which the switch occurred was the last pass; AprioriHybrid thus incurred the cost

of switching without realizing the bene�ts. In general, the advantage of AprioriHybrid

over Apriori depends on how the size of the Ck set decline in the later passes. If Ck

remains large until nearly the end and then has an abrupt drop, we will not gain much

by using AprioriHybrid since we can use AprioriTid only for a short period of time after

the switch. This is what happened with the M.cust and T20.I6.D100K datasets. On the

other hand, if there is a gradual decline in the size of Ck, AprioriTid can be used for a

while after the switch, and a signi�cant improvement can be obtained in the execution

time.

The current heuristic used to switch from Apriori to AprioriTid will result in Apriori-

Hybrid degenerating to Apriori if the database size is very large compared to the memory

available. If disks with high throughput (for example, RAID disks) are available, the

performance of AprioriTid would improve since it would not be IO bound. In this case,

heuristics which switch earlier, say, when the average number of candidates contained in

a transaction is small, would maintain the performance advantage of AprioriHybrid.

2.4.8 Scale-up

Figure 16 shows how AprioriHybrid scales up as the number of transactions is increased

from 100,000 to 10 million transactions. We used the combinations (T5.I2), (T10.I4),

and (T20.I6) for the average sizes of transactions and itemsets respectively. All other

parameters were the same as for the data in Table 3. The sizes of these datasets for

10 million transactions were 239MB, 439MB and 838MB respectively. The minimum

support level was set to 0.75%. The execution times are normalized with respect to the

times for the 100,000 transaction datasets in the �rst graph and with respect to the 1

million transaction dataset in the second. As shown, the execution times scale quite
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linearly.

Next, we examined how AprioriHybrid scaled up with the number of items. We

increased the number of items from 1000 to 10,000 for the three parameter settings

T5.I2.D100K, T10.I4.D100K and T20.I6.D100K. All other parameters were the same as

for the data in Table 3. We ran experiments for a minimum support at 0.75%, and

obtained the results shown in Figure 17. The execution times decreased a little since

the average support for an item decreased as we increased the number of items. This

resulted in fewer frequent itemsets and, hence, faster execution times.

Finally, we investigated the scale-up as we increased the average transaction size. The

aim of this experiment was to see how our data structures scaled with the transaction
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size, independent of other factors like the physical database size and the number of

frequent itemsets. We kept the physical size of the database roughly constant by keeping

the product of the average transaction size and the number of transactions constant. The

number of transactions ranged from 200,000 for the database with an average transaction

size of 5 to 20,000 for the database with an average transaction size 50. Fixing the

minimum support as a percentage would have led to large increases in the number of

frequent itemsets as the transaction size increased, since the probability of a itemset being

present in a transaction is roughly proportional to the transaction size. We therefore set

the minimum support level as a �xed number of transactions. Hence the minimum

support, as a percentage, actually increases as the number of transactions decreases.

The results are shown in Figure 18. The numbers in the key (e.g. 500) refer to this

minimum support. As shown, the execution times increase with the transaction size, but

only gradually. The main reason for the increase was that in spite of setting the minimum

support in terms of the number of transactions, the number of frequent itemsets increased

with increasing transaction length. A secondary reason was that �nding the candidates

present in a transaction took a little more time.

Although we only presented scale-up results for AprioriHybrid, we observed nearly

identical results for the Apriori algorithm.

2.5 Overview of Follow-on Work

Subsequent to this work, [PCY95] came up with a variation on the Apriori algorithm.

Their extension was to hash candidates of size 2 into a hash-table during the �rst pass, in

addition to counting support of items. However, as mentioned in Section 2.2.1, the hash-

tree can be implemented as a two-dimensional array during the second pass, since the

candidates are generated by essentially taking a cross-product of the set of all frequent
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items. There are two advantages to an array implementation. First, there is no function-

call overhead, since incrementing the support of candidates contained in the transaction

can be done by a 2-level for-loop over the frequent items in the transaction. Second,

the memory utilization per candidate is just 4 bytes. The amount of work done per

transaction for counting candidates of size 2 with this approach is O(average-number-of-

frequent-items-per-transaction2), while their approach does O(average-number-of-items-

per-transaction2) work. [PCY95] did not use this more sophisticated implementation of

the hash-tree for the second pass. so, their experiments showed their approach being

faster (due to the function-call overhead for the hash-tree). Their results indicate the

importance of this optimization.

Subsequent to this work, [SON95] proposed the Partition algorithm to minimize the

number of passes over the data. The idea was to partition the data into small chunks,

�nd the locally frequent itemsets in each chunk, and then make one more pass to �nd the

actual support for the union of all the locally frequent itemsets. The intuition behind

this procedure is that any frequent itemset must be locally frequent in at least one of the

partitions. While the Apriori algorithm can be used to �nd the locally frequent itemsets,

[SON95] used an algorithm similar to AprioriTid. Their algorithm keeps a list of the

TIDs for each frequent itemset, and the support for a candidate (generated using apriori

candidate generation) is found by scanning the TID lists of the two frequent itemsets

from which this candidate was generated. This algorithm tends to do better than Apriori

in later passes, while Apriori tends to do better in earlier passes. In fact, [SON95] used

the Apriori algorithm for the second pass. [SON95] assumed that the number of items

would be small enough that the �rst and second passes could be done simultaneously.

This is rarely the case for real-life datasets. Thus, in many cases, Partition will require

a total of three passes over the data, rather than two. Partition is also susceptible to the
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fact that, unless the data is scanned in random order, there may be many locally frequent

itemsets which are not globally frequent. However, random I/O would incur disk seeks,

and be much slower than sequential I/O. When reading data from �les, the bottleneck

is currently CPU, not I/O.5 Hence Partition is probably a good idea if the data is being

read from a repository with expensive I/O. In other scenarios, Apriori would probably

be a better choice.

2.6 Summary

In this chapter, we presented two new algorithms, Apriori and AprioriTid, for discovering

all signi�cant association rules between items in a large database of transactions. We

compared these algorithms to the previously known algorithms, the AIS [AIS93b] and

SETM [HS95] algorithms. We presented experimental results, using both synthetic and

real-life data, showing that the proposed algorithms always outperform AIS and SETM.

The performance gap increased with the problem size, and ranged from a factor of three

for small problems to more than an order of magnitude for large problems.

We showed how the best features of the two proposed algorithms can be combined

into a hybrid algorithm, called AprioriHybrid, which then becomes the algorithm of

choice for this problem. Scale-up experiments showed that AprioriHybrid scales linearly

with the number of transactions. In addition, the execution time decreases a little as

the number of items in the database increases. As the average transaction size increases

(while keeping the database size constant), the execution time increases only gradually.

These experiments demonstrate the feasibility of using AprioriHybrid in real applications

involving very large databases.

Despite its performance advantages, the implementation of AprioriHybrid is more

5This will probably change in the future, since CPU speeds are rising faster than disk speeds. How-
ever, parallel disks can be used to improve I/O bandwidth.
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complex than Apriori. Hence the somewhat worse performance of Apriori, which has the

same scale-up characteristics as AprioriHybrid, may be an acceptable tradeo� in many

situations.
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Chapter 3

Mining Generalized Association

Rules

3.1 Introduction

In Chapter 2, we gave fast algorithms for the problem of mining association rules. In

many cases, taxonomies (isa hierarchies) over the items are available. An example of

a taxonomy is shown in Figure 19: this taxonomy says that Jacket isa Outerwear, Ski

Pants isa Outerwear, Outerwear isa Clothes, etc. Users are interested in generating rules

that span di�erent levels of the taxonomy. For example, we may infer a rule that people

who buy Outerwear tend to buy Hiking Boots from the fact that people bought Jackets

with Hiking Boots and and Ski Pants with Hiking Boots. However, the support for the

rule \Outerwear ) Hiking Boots" may not be the sum of the supports for the rules

\Jackets) Hiking Boots" and \Ski Pants) Hiking Boots" since some people may have

bought Jackets, Ski Pants and Hiking Boots in the same transaction. Also, \Outerwear

) Hiking Boots" may be a valid rule, while \Jackets ) Hiking Boots" and \Clothes

) Hiking Boots" may not. The former may not have minimum support, and the latter

may not have minimum con�dence.

Finding rules across di�erent levels of the taxonomy is valuable since:

� Rules at lower levels may not have minimum support. Few people may buy Jackets

with Hiking Boots, but many people may buy Outerwear with Hiking Boots. Thus

many signi�cant associations may not be discovered if we restrict rules to items
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Figure 19: Example of a Taxonomy

at the leaves of the taxonomy. Since department stores or supermarkets typically

have hundreds of thousands of items, the support for rules involving only leaf items

(typically UPC or SKU codes1) tends to be extremely small.

� Taxonomies can be used to prune uninteresting or redundant rules. We will discuss

this further in Section 3.2.1.

In general, multiple taxonomies may be present. For example, there could be a

taxonomy for the price of items (cheap, expensive, etc.), and another for the category.

Multiple taxonomies may be modeled as a single taxonomy which is a DAG (directed

acyclic graph). A common application that uses multiple taxonomies is loss-leader anal-

ysis. In addition to the usual taxonomy which classi�es items into brands, categories,

product groups, etc., there is a second taxonomy where items which are on sale are con-

sidered to be children of a \items-on-sale" category, and users look for rules containing

the \items-on-sale" item.

In this chapter, we introduce the problem of mining generalized association rules.

Informally, given a set of transactions and a taxonomy, we want to �nd association rules

where the items may be from any level of the taxonomy. We give a formal problem

description in Section 3.2. One drawback users experience in applying association rules

to real problems is that they tend to get a lot of uninteresting or redundant rules along

with the interesting rules. We introduce an interest-measure that uses the taxonomy to

1Universal Product Code, Stock Keeping Unit
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prune redundant rules.

An obvious solution to the problem is to replace each transaction T with an \extended

transaction" T 0, where T 0 contains all the items in T as well as all the ancestors of each

items in T . For example, if the transaction contained Jackets, we would add Outerwear

and Clothes to get the extended-transaction. We can then run any of the algorithms for

mining association rules given in Chapter 2 (e.g., Apriori) on the extended transactions

to get generalized association rules. However, this \Basic" algorithm is not very fast;

two more sophisticated algorithms that we propose in this Chapter will be shown to run

2 to 5 times faster than Basic (and more than 100 times faster on one real-life dataset).

We describe the Basic algorithm and our two algorithms in Section 3.3, and evalu-

ate their performance on both synthetic and real-life data in Section 3.4. Finally, we

summarize our work and conclude in Section 3.5.

Related Work

Han and Fu [HF95] concurrently came up with an algorithm similar to our upcoming

Cumulate algorithm, based on the Apriori algorithm in Chapter 2. However, the focus

of [HF95] is on �nding association rules at the same level of the taxonomy, rather than

on both rules at the same level and rules across di�erent levels. (Finding rules across

di�erent levels is mentioned in a \Discussion" section, without an implementation or

a performance evaluation.) Further, their paper focuses on the tradeo�s involved in

creating multiple copies of the transaction data (one for each taxonomy level), rather

than adding the items in the taxonomy on-the-
y. In many cases, however, there may

not be enough disk space to create multiple copies of the data.
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3.2 Problem Formulation

Let I = fi1; i2; : : : ; img be a set of literals, called items. Let T be a directed acyclic

graph on the literals. An edge in T represents an isa relationship, and T represents a

set of taxonomies. If there is an edge in T from p to c, we call p a parent of c and c a

child of p (p represents a generalization of c.) We model the taxonomy as a DAG rather

than a forest to allow for multiple taxonomies.

We use lower case letters to denote items and upper case letters for sets of items

(itemsets). We call bx an ancestor of x (and x a descendant of bx) if there is an edge from

bx to x in the transitive-closure of T . Note that a node is not an ancestor of itself, since

the graph is acyclic.

Let D be a set of transactions, where each transaction T is a set of items such that

T � I. (While we expect the items in T to be leaves in T , we do not require this.) We

say that a transaction T supports an item x 2 I if x is in T or x is an ancestor of some

item in T . We say that a transaction T supports an itemset X � I if T supports every

item in the set X.

A generalized association rule is an implication of the form X ) Y , where X � I,

Y � I, X \ Y = ;, and no item in Y is an ancestor of any item in X. The rule X ) Y

holds in the transaction set D with con�dence c if c% of transactions in D that support

X also support Y . The rule X ) Y has support s in the transaction set D if s% of

transactions in D support X [Y . The reason for the condition that no item in Y should

be an ancestor of any item in X is that a rule of the form \x ) ancestor(x)" is trivially

true with 100% con�dence, and hence redundant. We call rules that satisfy our de�nition

generalized association rules because both X and Y can contain items from any level of

the taxonomy T , a possibility not entertained by the formalism introduced in [AIS93b].
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We �rst introduce a problem statement without the interest measure. This de�nition

may lead to many \redundant" rules may be found. We will formalize the notion of re-

dundancy and modify the problem statement accordingly in Section 3.2.1. (We introduce

this version of the problem statement here in order to explain redundancy.)

Problem Statement (without interest measure) Given a set of transactions D

and a set of taxonomies T , the problem of mining generalized association rules is to dis-

cover all rules that have support and con�dence greater than the user-speci�ed minimum

support (called minsup) and minimum con�dence (called minconf ) respectively.

Example Let I = fFootwear, Shoes, Hiking Boots, Clothes, Outerwear, Jackets, Ski

Pants, Shirtsg and T the taxonomy shown in Figure 19. Consider the database shown

in Figure 20. Let minsup be 30% (that is, two transactions) and minconf 60%. Then

the sets of items with minimum support (frequent itemsets), and the rules corresponding

to the these itemsets are shown in Figure 20. Note that the rules \Ski Pants ) Hiking

Boots" and \Jackets ) Hiking Boots" do not have minimum support, but the rule

\Outerwear ) Hiking Boots" does.

Observation Let Pr(X) denote the probability that all the items in X are contained

in a transaction. Then support(X ) Y ) = Pr(X [ Y ) and con�dence(X ) Y ) =

Pr(Y jX) (since Pr(Y jX) = Pr(X [Y )=Pr(X)). Note that Pr(X [Y ) is the probability

that all the items in X [ Y are present in the transaction.

If a set fx,yg has minimum support, so do fx,byg, fbx,yg and fbx,byg. (bx denotes an

ancestor of x). However if the rule x ) y has minimum support and con�dence, only

the rule x ) by is guaranteed to have both minimum support and con�dence. While

the rules bx ) y and bx ) by will have minimum support, they may not have minimum
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Database D
Transaction Items Bought

1 Shirt
2 Jacket, Hiking Boots
3 Ski Pants, Hiking Boots
4 Shoes
5 Shoes
6 Jacket

Taxonomy T

Clothes

Jackets

Footwear

Ski Pants

ShirtsOuterwear Shoes Hiking Boots

Frequent Itemsets

Itemset Support
f Jacket g 2
f Outerwear g 3
f Clothes g 4
f Shoes g 2
f Hiking Boots g 2
f Footwear g 4
f Outerwear, Hiking Boots g 2
f Clothes, Hiking Boots g 2
f Outerwear, Footwear g 2
f Clothes, Footwear g 2

Rules

Rule Support Conf.
Outerwear ) Hiking Boots 33% 66.6%
Outerwear ) Footwear 33% 66.6%
Hiking Boots ) Outerwear 33% 100%
Hiking Boots ) Clothes 33% 100%

Figure 20: Example of associations with taxonomies
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con�dence. For example, in Figure 20, the con�dence of \Outerwear ) Hiking boots"

is 66.6% while that of \Clothes ) Hiking Boots" is 50%, less than minimum support.

It is important to note that the support for an item in the taxonomy is not equal to

the sum of the supports of its children, since several of the children could be present in

a single transaction. Hence we cannot directly infer rules about items at higher levels of

the taxonomy from rules about the leaves.

3.2.1 Interest Measure

Since the output of the associations algorithm can be quite large, we would like to iden-

tify the interesting or useful rules. [ST95] looks at subjective measures of interestingness

and suggests that a pattern is interesting if it is unexpected (surprising to the user)

and/or actionable (the user can do something with it). [ST95] also distinguishes between

subjective and objective interest measures. Previous work on quantifying the \useful-

ness" or \interest" of a rule has focused on by how much the support of a rule exceeds

its expected support based on independence between the antecedent and consequent.

For example, Piatetsky-Shapiro [PS91] argues that a rule X ) Y is not interesting if

support(X ) Y ) � support(X) � support(Y ). We implemented this idea and used

the chi-square value to check if the rule was statistically signi�cant. (Intuitively, the

test looks at whether the support was di�erent enough from the expected support for

the correlation between the antecedent and consequent to be statistically signi�cant.)

However, this measure did not prune many rules; on two real-life datasets (described in

Section 3.4.5), less than 1% of the generalized association rules were found to be redun-

dant (not statistically signi�cant). In this section, we use the information in taxonomies

to derive a new interest measure that prunes out 40% to 60% of the rules as \redundant"

rules.
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To motivate our approach, consider the rule

Milk) Cereal (8% support, 70% con�dence)

If \Milk" is a parent of \Skim Milk", and about a quarter of sales of \Milk" are \Skim

Milk", we would expect the rule

Skim Milk) Cereal

to have 2% support and 70% con�dence. If the actual support and con�dence for \Skim

Milk) Cereal" are around 2% and 70% respectively, the rule can be considered redun-

dant since it does not convey any additional information and is less general than the

�rst rule. We capture this notion of \interest" by saying that we only want to �nd rules

whose support is more than R times the expected value or whose con�dence is more than

R times the expected value, for some user-speci�ed constant R.2 We formalize the above

intuition below.

We call bZ an ancestor of Z (where Z; bZ are sets of items such that Z; bZ � I) if we

can get bZ from Z by replacing one or more items in Z with their ancestors and Z and

bZ have the same number of items. (The reason for the latter condition is that it is not

meaningful to compute the expected support of Z from bZ unless they have the same

number of items. For instance, the support for fClothesg does give any clue about the

expected support for fOuterwear, Shirtsg.) We call the rules cX ) Y , cX ) bY or X ) bY
ancestors of the rule X ) Y . Given a set of rules, we call cX ) bY a close ancestor of

2We can easily enhance this de�nition to say that we want to �nd rules with minimum support
whose support (or con�dence) is either more or less than the expected value. However, many rules
whose support is less than expected will not have minimum support. As a result, the most interesting
negative rules, with the largest deviation from expected support, are unlikely to have minimum support.
Hence to �nd all rules whose support is less than their expected support by at least some user-speci�ed
minimumdi�erence, we should check candidates without minimumsupport to see if their support di�ers
from their expected support by this amount before discarding them. We defer implementation of this
idea to future work.
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X ) Y if there is no rule X 0 ) Y 0 such that X 0 ) Y 0 is an ancestor of X ) Y and

cX ) bY is an ancestor of X 0 ) Y 0. (Similar de�nitions apply for X ) bY and cX ) Y .)

Consider a rule X ) Y , and let Z = X [ Y . The support of Z will be the same

as the support of the rule X ) Y . Let E
Pr(bZ)[Pr(Z)] denote the \expected" value

of Pr(Z) given Pr( bZ), where bZ is an ancestor of Z. Let Z = fz1; : : : ; zng and bZ =

fcz1; : : : ; bzj; zj+1; : : : ; zng, 1 � j � n, where bzi is an ancestor of zi. Then we de�ne

E
Pr(bZ)[Pr(Z)] = Pr(z1)

Pr(cz1) � � � � �
Pr(zj)

Pr( bzj) � Pr( bZ):
to be the expected value of Pr(Z) given the itemset bZ.3

Similarly, let E
Pr(bY j bX)

[Pr(Y jX)] denote the \expected" con�dence of the rule X )

Y given the rule cX ) bY . Let Y = fy1; : : : ; yng and bY = fcy1; : : : ;cyj; yj+1; : : : ; yng,
1 � j � n, where byi is an ancestor of yi. Then we de�ne

E
Pr(bY j bX)

[Pr(Y jX)] =
Pr(y1)

Pr(cy1) � � � � � Pr(yj)

Pr(cyj) � Pr( bY j cX)

Note that E bX)Y
[Pr(Y jX)] = Pr(Y j cX)].

De�nition of Interesting Rules Given a user-speci�ed minimum interest R, we call

a rule X ) Y R-interesting w.r.t an ancestor cX ) bY if the support of the rule X ) Y

is R times the expected support based on cX ) bY , or the con�dence is R times the

expected con�dence based on cX ) bY .
Given a set of rules S and a minimum interest R, a rule X ) Y is interesting (in

S) if it has no ancestors or it is R-interesting with respect to its close ancestors among

its interesting ancestors. We say that an rule X ) Y is partially interesting (in S) if it

3Alternate de�nitions are possible. For example, we could de�ne:

E
Pr(bZ)

[Pr(Z)] =
Pr(fz1; : : : ; zjg)

Pr(f bz1; : : : ; bzjg) � Pr( bZ):
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Rule # Rule Support
1 Clothes ) Footwear 10%
2 Outerwear ) Footwear 8%
3 Jackets ) Footwear 4%

Item Support
Clothes 5
Outerwear 2
Jackets 1

Figure 21: Example for Interest Measure de�nition

has no ancestors or is R-interesting with respect to at least one close ancestor among its

interesting ancestors.

We motivate the reason for only considering close ancestors among all interesting

ancestors with an example. Consider the rules shown in Figure 21. The support for the

items in the antecedent are shown alongside. Assume we have the same taxonomy as in

the previous example. Rule 1 has no ancestors and is hence interesting. The support

for rule 2 is twice the expected support based on rule 1, and is thus interesting. The

support for rule 3 is exactly the expected support based on rule 2, but twice the support

based on rule 1. We do not want consider rule 3 to be interesting since its support can

be predicted based on rule 2, even though its support is more than expected if we ignore

rule 2 and look at rule 1.

3.2.2 Problem Statement

Given a set of transactions D and a user-speci�ed minimuminterest (calledmin-interest),

the problem of mining association rules with taxonomies is to �nd all interesting asso-

ciation rules that have support and con�dence greater than the user-speci�ed minimum

support (called minsup) and minimum con�dence (called minconf ) respectively.

For some applications, we may want to �nd partially interesting rules rather than

just interesting rules. Note that if min-interest = 0, all rules are found, regardless of

interest.
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3.3 Algorithms

The problem of discovering generalized association rules can be decomposed into three

parts:

1. Find all sets of items (itemsets) whose support is greater than the user-speci�ed

minimum support. Itemsets with minimum support are called frequent itemsets.

2. Use the frequent itemsets to generate the desired rules. The general idea is that

if, say, ABCD and AB are frequent itemsets, then we can determine if the rule

AB ) CD holds by computing the ratio conf = support(ABCD)/support(AB). If

conf � minconf, then the rule holds. (The rule will have minimum support because

ABCD is frequent.)

3. Prune all uninteresting rules from this set.

In the rest of this section, we look at algorithms for �nding all frequent itemsets

where the items can be from any level of the taxonomy. Given the frequent itemsets,

the algorithm in Section 2.3 can be used to generate rules. We �rst describe the obvious

approach for �nding frequent itemsets, and then present our two algorithms.

3.3.1 Basic

Consider the problem of deciding whether a transaction T supports an itemset X. If we

take the raw transaction, this involves checking for each item x 2 X whether x or some

descendant of x is present in the transaction. The task become much simpler if we �rst

add to T all the ancestors of each item in T ; let us call this extended transaction T 0. Now

T supports X if and only if T 0 is a superset of X. Hence a straight-forward way to �nd

generalized association rules would be to run any of the algorithms for �nding association



64

k-itemset An itemset having k items.

Lk Set of frequent k-itemsets (those with minimum support).

Ck Set of candidate k-itemsets (potentially frequent itemsets).

T Taxonomy

Figure 22: Notation for Algorithms

rules from Chapter 2 on the extended transactions. We discuss below the generalization

of the Apriori algorithm given in Section 2.2.1. Figure 23 gives an overview of the

algorithm using the notation in Figure 22, with the additions to the Apriori algorithm

highlighted.

The �rst pass of the algorithm simply counts item occurrences to determine the fre-

quent 1-itemsets. Note that items in the itemsets can come from the leaves of the taxon-

omy or from interior nodes. A subsequent pass, say pass k, consists of two phases. First,

the frequent itemsets Lk�1 found in the (k�1)th pass are used to generate the candidate

itemsets Ck, using the apriori candidate generation function described in Section 2.2.1.

Next, the database is scanned and the support of candidates in Ck is counted. For fast

counting, we need to e�ciently determine the candidates in Ck that are contained in a

given transaction T . We reuse the hash-tree data structure described in Section 2.2.1 for

this purpose.

3.3.2 Cumulate

We now add several optimizations to the Basic algorithm to develop the algorithm Cu-

mulate. The name indicates that all itemsets of a certain size are counted in one pass,

unlike the Stratify algorithm in Section 3.3.3.

1. Filtering ancestors. We do not have to add all ancestors of the items in a

transaction T to T . Instead, we just need to add ancestors that are in one (or

more) of the candidate itemsets being counted in the current pass. In fact, if the
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L1 := ffrequent 1-itemsetsg; // includes items at any level.
k := 2; // k represents the pass number
while ( Lk�1 6= ; ) do
begin

Ck := New candidates of size k generated from Lk�1.
forall transactions T 2 D do
begin

Add all ancestors of each item in T to T , removing any duplicates.
Increment the count of all candidates in Ck that are contained in T .

end

Lk := All candidates in Ck with minimum support.
k := k + 1;

end
Answer :=

S
k Lk;

Figure 23: Basic Algorithm

original item is not in any of the itemsets, it can be dropped from the transaction.

For example, assume the parent of \Jacket" is \Outerwear", and the parent of

\Outerwear" is \Clothes". Let fClothes, Shoesg be the only itemset being counted.

Then, in any transaction containing Jacket, we simply replace Jacket by Clothes.

We do not need to keep Jacket in the transaction, nor do we need to add Outerwear

to the transaction.

2. Pre-computing ancestors. Rather than �nding ancestors for each item by

traversing the taxonomy graph, we can pre-compute the ancestors for each item.

We can drop ancestors that are not present in any of the candidates when pre-

computing ancestors.

3. Pruning itemsets containing an item and its ancestor. We �rst present two

lemmas to justify this optimization.

Lemma 3 The support for an itemset X that contains both an item x and its

ancestor bx will be the same as the support for the itemset X�bx.
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Proof: Clearly, any transaction that supports X will also support X� bx, since
X�bx � X. By de�nition, any transaction that supports x supports bx. Hence any
transaction that supports X�bx will also support X. 2

Lemma 4 If Lk, the set of frequent k-itemsets, does not include any itemset that

contains both an item and its ancestor, the set of candidates Ck+1 generated by the

candidate generation procedure in Section 3.3.1 will not include any itemset that

contains both an item and its ancestor.

Proof: Assume that the candidate generation procedure generates a candidate X

that contains both an item x and its ancestor bx. Let X 0 be any subset of X with

k items that contains both x and bx. Since X was not removed in the prune step of

candidate generation, X 0 must have been in Lk. But this contradicts the statement

that no itemset in Lk includes both an item and its ancestor. 2

Lemma 3 shows that we need not count any itemset which contains both an item

and its ancestor. We add this optimization by pruning the candidate itemsets of size

two which consist of an item and its ancestor. Lemma 4 shows that pruning these

candidates is su�cient to ensure that we never generate candidates in subsequent

passes which contain both an item and its ancestor.

Figure 24 gives an overview of the Cumulate algorithm, with the additions to the

Basic algorithm highlighted.

3.3.3 EstMerge

We motivate this next algorithm with an example. Let fClothes, Shoesg, fOuterwear,

Shoesg and fJacket, Shoesg be candidate itemsets to be counted, with \Jacket" being
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Compute T �, the set of ancestors of each item, from T . // Opt. 2
L1 := ffrequent 1-itemsetsg;
k := 2; // k represents the pass number
while ( Lk�1 6= ; ) do
begin

Ck := New candidates of size k generated from Lk�1.
if (k = 2) then

Delete any candidate in C2 that consists of an item and its ancestor. // Opt. 3
Delete all items in T � that are not present in any of the candidates in Ck. // Opt. 1
forall transactions T 2 D do

begin
foreach item x 2 T do

Add all ancestors of x in T � to T .
Remove any duplicates from T .
Increment the count of all candidates in Ck that are contained in T .

end

Lk := All candidates in Ck with minimum support.
k := k + 1;

end

Answer :=
S
k Lk;

Figure 24: Cumulate Algorithm

the child of \Outerwear", and \Outerwear" the child of \Clothes". If fClothes, Shoesg

does not have minimum support, we do not have to count either fOuterwear, Shoesg or

fJacket, Shoesg. Thus, rather than counting all candidates of a given size in the same

pass as in Cumulate, it may be faster to �rst count the support of fClothes, Shoesg,

then count fOuterwear, Shoesg if fClothes, Shoesg turns out to have minimum support,

and �nally count fJacket, Shoesg if fOuterwear, Shoesg also has minimum support. Of

course, the extra cost in making multiple passes over the database may cost more than

the bene�t of counting fewer itemsets. We will discuss this tradeo� in more detail shortly.

We develop this algorithm by �rst presenting a straight-forward version, Stratify, and

then describing the use of sampling to increase its e�ectiveness, yielding the Estimate and

EstMerge versions. The optimizations that we introduced for the Cumulate algorithm

apply to this algorithm as well.
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Stratify

Consider the partial ordering induced by the taxonomy DAG on a set of itemsets. Item-

sets with no parents are considered to be at depth 0. For other itemsets, the depth of

an itemset X is de�ned to be (max(fdepth(cX) j cX is a parent of Xg) + 1).

We �rst count all itemsets C0 at depth 0. After deleting candidates that are de-

scendants of those itemsets in C0 that did not have minimum support, we count the

remaining itemsets at depth 1 (C1). After deleting candidates that are descendants of

the itemsets in C1 without minimum support, we count the itemsets at depth 2, etc. If

there are only a few candidates at depth n, we can count candidates at di�erent depths

(n, n+1, ...) together to reduce the overhead of making multiple passes.

There is a tradeo� between the number of itemsets counted (CPU time) and the

number of passes over the database (IO+CPU time). One extreme would be to make a

pass over the database for the candidates at each depth. This would result in a minimal

number of itemsets being counted, but we may waste a lot of time in scanning the

database multiple times. The other extreme would be to make just one pass for all the

candidates, which is what Cumulate does. This would result in counting many itemsets

that do not have minimum support and whose parents do not have minimum support.

In our implementation of Stratify, we used the heuristic (empirically determined) that

we should count at least 20% of the candidates in each pass.

Estimate

Rather than hoping that candidates which include items at higher levels of the taxonomy

will not have minimum support, resulting in our not having to count candidates which

include items at lower levels, we can use sampling as discussed below to estimate the

support of candidates. We then count candidates that are expected to have minimum
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support as well as candidates that are not expected to have minimum support but all

of whose parents have minimum support. (We call this set C 0
k, for candidates of size

k.) We expect that the latter candidates will not have minimum support, and hence

we will not have to count any of the descendants of those candidates. If some of those

candidates turn out to have minimum support, we make an extra pass to count their

descendants. (We call this set of candidates C 00
k .) Note that if we only count candidates

that are expected to have minimum support, we would have to make another pass to

count their children, since we can only be sure that their children do not have minimum

support if we actually count them.

In our implementation, we included candidates in C 0
k whose support in the sample

was 0.9 times the minimum support, and candidates all of whose parents had 0.9 times

the minimum support, in order to reduce the e�ect of sampling error. We will discuss

the e�ect of changing this sampling error margin shortly, when we also discuss how the

sample size can be chosen. Given the sample size, we chose the sample during the �rst

pass as follows. We generate a random number n between 1 and 2=sampling frequency,

and add the nth transaction to the sample. If the next random number is m, we add the

mth transaction after the previous transaction that was chosen to the sample and so on.

Example For example, consider the three candidates and two support scenarios shown

in Figure 25. Let \Jacket" be a child of \Outerwear" and \Outerwear" a child of

\Clothes". Let minimum support be 5%, and let the support for the candidates in a

sample of the database be as shown in Figure 25. Hence, based on the sample, we expect

only fClothes, Shoesg to have minimum support over the database. We now �nd the

support of both fClothes, Shoesg and fOuterwear, Shoesg over the entire database. We

count fOuterwear, Shoesg even though we do not expect it to have minimum support
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Candidate Support in Support in Database
Itemsets Sample Scenario A Scenario B

fClothes, Shoesg 8% 7% 9%
fOuterwear, Shoesg 4% 4% 6%
fJacket, Shoesg 2%

Figure 25: Example for Estimate Algorithm

since we will not know for sure whether it has minimum support unless fClothes, Shoesg

does not have minimum support, and we expect fClothes, Shoesg to have minimum

support. Now, in scenario A, we do not have to �nd the support for fJacket, Shoesg

since fOuterwear, Shoesg does not have minimum support (over the entire database).

However, in scenario B, we have to make an extra pass to count fJacket, Shoesg.

EstMerge

Since the estimate (based on the sample) of which candidates have minimumsupport has

some error, Estimate often makes a second pass to count the support for the candidates

in C 00
k (the descendants of candidates in Ck that were wrongly expected to not have

minimum support.) The number of candidates counted in this pass is usually small.

Rather than making a separate pass to count these candidates, we can count them when

we count candidates in Ck+1. However, since we do not know if the candidates in C 00
k

will have minimum support or not, we assume all these candidates to be frequent when

generating Ck+1. That is, we will consider Lk to be those candidates in C 0
k with minimum

support, as well as all candidates in C 00
k , when generating Ck+1. This can generate more

candidates in Ck+1 than would be generated by Estimate, but does not a�ect correctness.

The tradeo� is between the extra candidates counted by EstMerge against the extra pass

made by Estimate. An overview of the EstMerge algorithm is given in Figure 26. (All

the optimizations introduced for the Cumulate algorithm apply here, though we have

omitted them in the �gure.)
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L1 := ffrequent 1-itemsetsg;
Generate DS , a sample of the database, in the �rst pass;
k := 2; // k represents the pass number
C00
1 := ;; // C00

k represents candidates of size k to be counted with candidates of size k+1.
while ( Lk�1 6= ; or C00

k�1 6= ;) do
begin

Ck := New candidates of size k generated from Lk�1 [ C00
k�1.

Estimate the support of the candidates in Ck by making a pass over DS .
C0
k := Candidates in Ck that are expected to have minimum support and candidates
all of whose parents are expected to have minimum support.

Find the support of the candidates in C0
k [ C00

k�1 by making a pass over D.
Delete all candidates in Ck whose ancestors (in C0

k) do not have minimum support.
C00
k := Remaining candidates in Ck that are not in C0

k .
Lk := All candidates in C0

k with minimum support.
Add all candidates in C 00

k�1 with minimum support to Lk�1.
k := k + 1;

end
Answer :=

S
k Lk;

Figure 26: Algorithm EstMerge

Size of Sample

We now discuss how to select the sample size for estimating the support of candidates.

Let p be the support (as a fraction) of a given itemset X. Consider a random sample

with replacement of size n from the database. The number of transactions in the sample

that contain X is a random variable s with binomial distribution of n trials, each having

success probability p. We use the abbreviation s � k (\s is at least as extreme as k")

de�ned by

s � k ()

(
x � k if k � pn
x � k if k < pn

Using Cherno� bounds [HR90] [AS92], the probability that the fractional support in the

sample is at least as extreme as a is bounded by

Pr[s � an] �

"�
p

a

�a �1�p
1�a

�1�a#n
(1)

Table 5 presents probabilities that the support of an itemset in the sample is less than
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p = 5% p = 1% p = 0:1%

a = .8p a = .9p a = .8p a = .9p a = .8p a = .9p

n = 1000 0.32 0.76 0.80 0.95 0.98 0.99
n = 10; 000 0.00 0.07 0.11 0.59 0.80 0.95
n = 100; 000 0.00 0.00 0.00 0.01 0.12 0.60
n = 1; 000; 000 0.00 0.00 0.00 0.00 0.00 0.01

Table 5: Pr[support in sample < a], given values for the sample size n, the real support
p and a

a when its real support is p, for various sample sizes n. For example, given a sample size

of 10,000 transactions, the probability that the estimate of a candidate's support is less

than 0.8% when its real support is 1% is less than 0.11.

Equation 1 suggests that the sample size should increase as the minimum support

decreases. Also, the probability that the estimate is o� by more than a certain fraction of

the real support depends only on the sample size, not on the database size. Experiments

showing the e�ect of sample size on the running time are given in Section 3.4.2.

3.4 Performance Evaluation

In this section, we evaluate the performance of the three algorithms on both synthetic

and real-life datasets. First, we describe the synthetic data generation program in Sec-

tion 3.4.1. We present some preliminary results comparing the three variants of the

strati�cation algorithm and the e�ect of changing the sample size in Section 3.4.2. We

then give the performance evaluation of the three algorithms on synthetic data in Sec-

tion 3.4.3. We do a reality check of our results on synthetic data by running the algo-

rithms against two real-life data sets in Section 3.4.4. Finally, we look at the e�ectiveness

of the interest measure in pruning redundant rules in Section 3.4.5.

We performed our experiments on an IBM RS/6000 250 workstation with 128 MB

of main memory running AIX 3.2.5. The data resided in the AIX �le system and was
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Parameter Default Value

jDj Number of transactions 1,000,000
jT j Average size of the transactions 10
jI j Average size of the maximal potentially frequent itemsets 4
jIj Number of maximal potentially frequent itemsets 10,000

N Number of items 100,000
R Number of roots 250
L Number of levels 4-5
F Fanout 5

D Depth-ratio

�
� probability that item in a rule comes from level i

probability that item comes from level i+ 1

�
1

Table 6: Parameters for Synthetic Data Generation (with default values)

stored on a local 2GB SCSI 3.5" drive with measured sequential throughput of about 2

MB/second.

3.4.1 Synthetic Data Generation

Our synthetic data generation program is a generalization of the algorithm discussed in

Section 2.4.3; the addition is the incorporation of taxonomies. The various parameters

and their default vales are shown in Table 6. We now describe the extensions to the data

generation algorithm in more detail.

The essential idea behind the synthetic data generation program in Section 2.4.3 was

to �rst generate a table of potentially frequent itemsets I, and then generate transactions

by picking itemsets from I and inserting them in the transaction.

To extend this algorithm, we �rst build a taxonomy over the items.4 For simplicity,

we modeled the taxonomy as a forest rather than a DAG. For any internal node, the

number of children is picked from a Poisson distribution with mean � equal to fanout F .

We �rst assign children to the roots, then to the nodes at depth 2, and so on, till we run

out of items. With this algorithm, it is possible for the leaves of the taxonomy to be at

4Out of the four parameters R, L, F and N , only three need to be speci�ed since any three of these
determine the fourth parameter.
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two di�erent levels; this allows us to change parameters like the fanout or the number of

roots in small increments.

Each item in the taxonomy tree (including non-leaf items) has a weight associated

with it, which corresponds to the probability that the item will be picked for a frequent

itemset. The weights are distributed such that the weight of an interior node x equals

the sum of the weights of all its children divided by the depth-ratio. Thus with a high

depth-ratio, items will be picked from the leaves or lower levels of the tree, while with a

low depth-ratio, items will be picked from higher up the tree.

Each itemset in I has a weight associated with it, which corresponds to the prob-

ability that this itemset will be part of a transaction. This weight is picked from an

exponential distribution with unit mean, and then multiplied by the geometric mean of

the probabilities of all the items in the itemset. The weights are later normalized so that

the sum of the weights for all the itemsets in I is 1. The next itemset to be put in a

transaction is chosen from I by tossing an jIj-sided weighted coin, where the weight for

a side is the probability of picking the associated itemset.

When an itemsetX in I is picked for adding to a transaction, it is �rst \specialized".

For each item bx in X which is not a leaf in the taxonomy, we descend the subtree rooted

at bx till we reach a leaf x, and replace bx with x. At each node, we decide what branch

to follow by tossing a k-sided weighted coin, where k is the number of children, and

the weights correspond to the weights of the children. We use this more complex model,

rather than just generate itemsets in I with all the items as leaves, so that the depth-ratio

can be varied.

We generate transactions as follows. We �rst determine the size of the next trans-

action. The size is picked from a Poisson distribution with mean � equal to jT j. We

then assign items to the transaction. Each transaction is assigned a series of potentially
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frequent itemsets. The next itemset to be added to the transaction is chosen as described

earlier. If the itemset on hand does not �t in the transaction, the itemset is put in the

transaction anyway in half the cases, and the itemset is moved to the next transaction

the rest of the cases. As before, only some of the items in the itemset are added to

the transaction since items in a frequent itemset may not always be bought together.

(Details are given in Section 2.4.3.)

3.4.2 Preliminary Experiments

Strati�cation Variants The results of comparing the three variants of the strati�ca-

tion algorithm on the default synthetic data are shown in Figure 27. At high minimum

support, when there are only a few rules and most of the time is spent scanning the

database, the performance of the three variants is nearly identical. At low minimum

support, when there are more rules, EstMerge does slightly better than Estimate and

signi�cantly better than Stratify. The reason is that even though EstMerge counts a few

more candidates than Estimate and Stratify, it makes fewer passes over the database,

resulting in better performance.

Although we do not show the performance of Stratify and Estimate in the graphs in

Section 3.4.3, the results were very similar to those in Figure 27. Both Estimate and

Stratify always did somewhat worse than EstMerge, with Estimate beating Stratify.

Size of Sample We changed the size of the EstMerge sample from 0.25% to 8% on the

synthetic data set generated with the default values. The results are shown in Figure 28.

The running time was higher at both low sample sizes and high sample sizes. In the

former case, the decrease in performance was due to the greater error in estimating

which itemsets would have minimum support. In the latter case, it was due to the

sampling overhead. Notice that the curve is quite 
at around the minimum time at 2%;



76

0

5

10

15

20

25

30

35

40

45

50

1 0.75 0.5 0.33

T
im

e
 (

m
in

u
te

s)

Minimum Support (%)

Stratify
Estimate

EstMerge

Figure 27: Variants of Stratify
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Figure 28: Changing Sample Size

there is no signi�cant di�erence in performance if we sample a little less or a little more

than 2%.

3.4.3 Comparison of Basic, Cumulate and EstMerge

We performed 6 experiments on synthetic datasets, changing a di�erent parameter in

each experiment. The results are shown in Figure 29. All the parameters except the one

being varied were set to their default values. The minimum support was 0.5% (except

for the �rst experiment, which varies minimum support). We obtained similar results at

other levels of support, though the gap between the algorithms typically increased as we

lowered the support.

Minimum Support: We changed minimum support from 2% to 0.3%. Cumulate

and EstMerge were around 3 to 4 times faster than Basic, with the performance gap

increasing as the minimum support decreased. At higher support levels, most of the

candidates were at the upper levels of the taxonomy. Hence the optimizations of the

Cumulate algorithm had less impact than at lower levels of support. At high support,

Cumulate and EstMerge took about the same time since there were only a few rules

and most of the time was spent scanning the database. At low support, EstMerge was
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Figure 29: Experiments on Synthetic Data
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Figure 30: Comparison of algorithms on real data

about 20% faster than Cumulate since there were more candidates at lower levels of

the taxonomy and such candidates are more likely to have ancestors without minimum

support.

Number of Transactions: We varied the number of transactions from 100,000 to

10 million. Rather than showing the elapsed time, the graph shows the elapsed time

divided by the number of transactions, such that the time taken by Cumulate for 1

million transactions is 1 unit. Again, EstMerge and Cumulate perform much better than

Basic. The ratio of the time taken by EstMerge to the time taken by Cumulate decreases

(i.e. improves) as the number of transactions increases, because when the sample size

is a constant percentage, the accuracy of the estimates of the support of the candidates

increases as the number of transactions increases.

Fanout: We changed the fanout from 5 to 25. This corresponded to decreasing the

number of levels. While EstMerge did about 25% better than Cumulate at fanout 5,

the performance advantage decreased as the fanout increased, and the two algorithms

did about the same at high fanout. The reason is that at a fanout of 25, the leaves of

the taxonomy were either at level 2 or level 3. Hence the percentage of candidates that
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could be pruned by sampling became very small and EstMerge was not able to count

signi�cantly fewer candidates than Cumulate. The performance gap between Basic and

the other algorithms decreases somewhat at high fanout since there were fewer rules and

a greater fraction of the time was spent just scanning the database.

Number of Roots: We increased the number of roots from 250 to 1000. As shown

by the �gure, increasing the number of roots has an e�ect similar to decreasing the

minimum support. The reason is that as the number of roots increases, the probability

that a speci�c root is present in a transaction decreases.

Number of Items/Levels: We varied the number of items from 10,000 to 100,000.

The main e�ect is to change the number of levels in the taxonomy tree, from most of the

leaves being at level 3 (with a few at level 4) at 10,000 items to most of the leaves being

at level 5 (with a few at level 4) at 100,000 items. Changing the number of items did not

signi�cantly a�ect the performance of Cumulate and EstMerge, but it did increase the

time taken by Basic. Since few of the items in frequent itemsets come from the leaves

of the taxonomy, the number of frequent itemsets did not change much for any of the

algorithms. However, Basic had to do more work to �nd the candidates contained in the

transaction since the transaction size (after adding ancestors) increased proportionately

with the number of levels. Hence the time taken by Basic increased with the number of

items. The time taken by the other two algorithms remained roughly constant, since the

transaction size after dropping ancestors which were not present in any of the candidates

did not change much.

Depth-Ratio: We changed the depth-ratio from 0.5 to 2. With high depth-ratios,

items in frequent itemsets will tend to be picked from the leaves or lower levels of the
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tree, while with low depth-ratios, items will be picked from higher up the tree. As shown

in the �gure, the performance gap between EstMerge and the other two algorithms

increased as the depth-ratio increased. At a depth-ratio of 2, EstMerge did about 30%

better than Cumulate, and about 5 times better than Basic. The reason is that EstMerge

was able to prune a higher percentage of candidates at high depth-ratios.

Summary Cumulate and EstMerge were 2 to 5 times faster than Basic on all the

synthetic datasets. EstMerge was 25% to 30% faster than Cumulate on many of the

datasets. EstMerge's advantage decreased at high fanout, since most of the items in

the rules came from the top levels of the taxonomy and EstMerge was not then able to

prune many candidates. There was an increase in the performance gap between Cumulate

and EstMerge as the number of transactions increased, since for a constant percentage

sample size, the accuracy of the estimates of the support of the candidates increases as

the number of transactions increases. All three algorithms exhibited linear scale-up with

the number of transactions.

3.4.4 Reality Check

To see if our results on synthetic data hold in the \real world", we also ran the algorithms

on two real-life datasets.

Supermarket Data This is data about grocery purchases of customers. There are a

total of 548,000 items. The taxonomy (created by the user) has 4 levels, with 118 roots.

There are around 1.5 million transactions, with an average of 9.6 items per transaction.

Figure 30 shows the time taken by the three algorithms as the minimum support is

decreased from 3% to 0.75%. These results are similar to those obtained on synthetic

data, with EstMerge being a little faster than Cumulate, and both being about 3 times
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as fast as Basic.

Department Store Data This is data from a department store. There are a total

of 228,000 items. The taxonomy has 7 levels, with 89 roots. There are around 570,000

transactions, with an average of 4.4 items per transaction. Figure 30 shows the time

taken by the three algorithms as the minimum support is decreased from 2% to 0.25%.

The y-axis uses a log scale. Surprisingly, the Basic algorithm was more than 100 times

slower than the other two algorithms. Since the taxonomy was very deep, the ratio of

the number of frequent itemsets that contained both an item and its ancestor to the

number of frequent itemsets that did not was very high. In fact, Basic counted around

300 times as many frequent itemsets as the other two algorithms, resulting in very poor

performance.

3.4.5 E�ectiveness of Interest Measure

We looked at the e�ectiveness of the interest measure in pruning rules for the two real-

life datasets. Figure 31 shows the fraction of rules pruned for the supermarket and the

department store datasets as the interest level is changed from 0 to 2 for di�erent values

of support and con�dence. For the supermarket data, about 40% of the rules were pruned

at an interest level of 1.1, while about 50% to 55% were pruned for the department store

data at the same interest level.

In contrast, the interest measure based on statistical signi�cance (i.e. correlation of

the antecedent and consequent) did not prune any rules at 50% con�dence, and it pruned

less than 1% of the rules at 25% con�dence (for both datasets). The reason is that

the minimum support constraint already prunes most itemsets where the items are not

correlated. Hence there is a statistically signi�cant correlation between the antecedent

and consequent for most frequent itemsets.
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Figure 31: E�ectiveness of Interest Measure

As an example of the way the interest measure prunes rules, the rule \[Carbonated

beverages] and [Crackers] ) [Dairy-milk-refrigerated]" was pruned because because its

support and con�dence were less than 1.1 times the expected support and con�dence (re-

spectively) of ancestor \[Carbonated beverages] and [Crackers]) [Milk]", where [Milk]

was an ancestor of [Dairy-milk-refrigerated].

3.5 Summary

In this chapter, we introduced the problem of mining generalized association rules. Given

a large database of customer transactions, where each transaction consists of a set of

items, and a taxonomy (isa hierarchy) on the items, our approach �nds associations

between items at any level of the taxonomy. Earlier work on association rules did not

consider the presence of taxonomies, thus restricting the items in the association rules

to be leaf-level items in the taxonomy.

The \obvious" solution to this mining problem is to replace each transaction with

an \extended transaction" that contains all the items in the original transaction as well

as all the ancestors of each item in the original transaction. We could then run any

of the earlier algorithms for mining association rules (e.g. Apriori) on these extended
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transactions to obtain generalized association rules. However, this \Basic" approach is

not very fast.

We presented two new algorithms, Cumulate and EstMerge. Empirical evaluation

showed that these two algorithms run 2 to 5 times faster than Basic; for one real-life

dataset, the performance gap was more than 100 times. Between the two algorithms,

EstMerge performs somewhat better than Cumulate, with the performance gap increas-

ing as the size of the database increases. Both EstMerge and Cumulate exhibit linear

scale-up with the number of transactions.

A problem that many users experience in applying association rules to real problems

is that many uninteresting or redundant rules are generated along with the interesting

rules. We developed a new interest measure that uses the taxonomy information to prune

redundant rules. The intuition behind this measure is that if the support and con�dence

of a rule are close to their expected values based on an ancestor of the rule, the more

speci�c rule can be considered redundant. This approach was able to prune 40% to 60%

of the rules on two real-life datasets. In contrast, an interest measure based on statistical

signi�cance rather than taxonomies was not able to prune even 1% of the rules.
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Chapter 4

Mining Quantitative Association

Rules

4.1 Introduction

In Chapters 2 and 3, we have looked at the problem of mining association rules. To

recapitulate, given a set of transactions, where each transaction is a set of items, an

association rule is an expression of the from X ) Y , where X and Y are sets of items.

The problem is to �nd all association rules that satisfy user-speci�ed minimum support

and minimum con�dence constraints. Conceptually, this problem can be viewed as �nd-

ing associations between the \1" values in a relational table where all the attributes are

boolean. The table has an attribute corresponding to each item and a record corre-

sponding to each transaction. The value of an attribute for a given record is \1" if the

item corresponding to the attribute is present in the transaction corresponding to the

record, else \0". In this chapter, we refer to this problem as the Boolean Association

Rules problem.

Relational tables in most business and scienti�c domains have richer attribute types.

Attributes can be quantitative (e.g. age, income) or categorical (e.g. zip code, make of

car). Boolean attributes can be considered a special case of categorical attributes.

In this chapter, we de�ne the problem of mining association rules over quantitative

and categorical attributes in large relational tables and present techniques for discovering

such rules. We refer to this mining problem as the Quantitative Association Rules prob-

lem. We give a formal statement of the problem in Section 4.2. For illustration, Figure 32
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People
RecID Age Married NumCars
100 23 No 1
200 25 Yes 1
300 29 No 0
400 34 Yes 2
500 38 Yes 2

(minimum support = 40%, minimum con�dence = 50%)
Rules (Sample) Support Con�dence

hAge: 30..39i and hMarried: Yesi ) hNumCars: 2i 40% 100%
hNumCars: 0..1i ) hMarried: Noi 40% 66.6%

Figure 32: Example of Quantitative Association Rules

shows a People table with three non-key attributes. Age and NumCars are quantitative

attributes, whereas Married is a categorical attribute. A quantitative association rule

present in this table is: hAge: 30..39i and hMarried: Yesi ) hNumCars: 2i.

4.1.1 Mapping to the Boolean Association Rules Problem

Let us examine whether the Quantitative Association Rules problem can be mapped to

the Boolean Association Rules problem. If all attributes are categorical or the quanti-

tative attributes have only a few values, this mapping is straightforward. Conceptually,

instead of having just one �eld in the table for each attribute, we have as many �elds as

the number of attribute values. The value of a boolean �eld corresponding to hattribute1,

value1i would be \1" if attribute1 had value1 in the original record, and \0" otherwise. If

the domain of values for a quantitative approach is large, an obvious approach will be to

�rst partition the values into intervals and then map each hattribute, intervali pair to a

boolean attribute. We can now use any algorithm for �nding Boolean Association Rules

(e.g., the Apriori algorithm from Section2.2.1) to �nd quantitative association rules.

Figure 33 shows this mapping for the non-key attributes of the People table given

in Figure 32. Age is partitioned into two intervals: 20..29 and 30..39. The categorical
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RecID Age: Age: Married: Married: NumCars: NumCars: NumCars:
20..29 30..39 Yes No 0 1 2

100 1 0 0 1 0 1 0
200 1 0 1 0 0 1 0
300 1 0 0 1 1 0 0
400 0 1 1 0 0 0 1
500 0 1 1 0 0 0 1

Figure 33: Mapping to Boolean Association Rules Problem

attribute, Married, has two boolean attributes \Married: Yes" and \Married: No". Since

the number of values for NumCars is small, NumCars is not partitioned into intervals;

each value is mapped to a boolean �eld. Record 100, which had hAge: 23i now has \Age:

20..29" equal to \1", \Age: 30..39" equal to \0", etc.

Mapping Woes There are two problems with this simple approach when applied to

quantitative attributes:

� \MinSup" If the number of intervals for a quantitative attribute (or values, if the

attribute is not partitioned) is large, the support for any single interval can be low.

Hence, without using larger intervals, some rules involving this attribute may not

be found because they lack minimum support.

� \MinConf" There is some information lost whenever we partition values into in-

tervals. Some rules may have minimum con�dence only when an item in the an-

tecedent consists of a single value (or a small interval). This information loss

increases as the interval sizes become larger.

For example, in Figure 33, the rule \hNumCars: 0i ) hMarried: Noi" has 100%

con�dence. But if we had partitioned the attribute NumCars into intervals such

that 0 and 1 cars end up in the same partition, then the closest rule is

\hNumCars: 0..1i ) hMarried: Noi", which only has 66.6% con�dence.
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There is a \catch-22" situation created by these two problems { if the intervals are

too large, some rules may not have minimum con�dence; if they are too small, some rules

may not have minimum support.

Breaking the logjam To break the above catch-22 situation, we can consider all possi-

ble continuous ranges over the values of the quantitative attribute, or over the partitioned

intervals. Thus if the partitions were [1..10], [11..20] and [21..30], we would also consider

the intervals [1..20], [11..30] and [1..30]. The \\MinSup" problem now disappears since

we combine adjacent intervals/values. The \MinConf" problem is still present; how-

ever, the information loss can be reduced by increasing the number of intervals, without

encountering the \MinSup" problem.

Unfortunately, increasing the number of intervals while simultaneously combining

adjacent intervals introduces two new problems:

� \Execution Time" If a quantitative attribute has n values (or intervals), there are

on average O(n2) ranges that include a speci�c value or interval. Hence the number

of items per record blows up, which will blow up the execution time.

� \Many Rules" If a value (or interval) of a quantitative attribute has minimum

support, so will any range containing this value/interval. Thus, the number of rules

blows up. Many of these rules will not be interesting. The notion of redundant

rules that we will discuss later is analogous to taxonomies.

There is a tradeo� between faster execution time with fewer intervals (mitigating

\Execution Time") and reducing information loss with more intervals (mitigating \Min-

Conf"). We can reduce the information loss by increasing the number of intervals, at

the cost of increasing the execution time and potentially generating many uninteresting
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rules (the \Many Rules" problem).

It is not meaningful to combine categorical attribute values unless unless a taxonomy

(isa hierarchy) is present on the attribute. In this case, the taxonomy can be used to

implicitly combine values of a categorical attribute (see Chapter 3, or [HF95]). Using

a taxonomy in this manner is somewhat similar to considering ranges over quantitative

attributes.

4.1.2 Our Approach

We consider ranges over adjacent values/intervals of quantitative attributes to avoid the

\MinSup" problem. To mitigate the \Execution Time" problem, we restrict the ex-

tent to which adjacent values/intervals may be combined by introducing a user-speci�ed

\maximum support" parameter; we stop combining intervals if their combined support

exceeds this value. However, any single interval/value whose support exceeds maximum

support is still considered.

But how do we decide whether to partition a quantitative attribute or not? And how

many partitions should there be, and where should the cuts be, in case we do decide to

partition? We introduce a partial completeness measure in Section 4.3 that gives us a

handle on the information lost by partitioning and helps in making these decisions.

To address the \Many Rules" problem, we give an interest measure in Section 4.4. The

interest measure is based on deviation from expectation and helps prune out uninteresting

rules. This measure is an extension of the interest measure introduced in Section 3.2.1.

We give an algorithm for discovering quantitative association rules in Section 4.5.

This algorithm shares the basic structure of the algorithm for �nding boolean association

rules given in Section2.2.1. However, to yield a fast implementation, the computational

details of how candidates are generated and how their supports are counted are new.
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We present our experience with this solution on a real-life dataset in Section 4.6.

4.1.3 Related Work

Apart from the work on mining association rules (discussed in Chapter 2) and the work

on mining generalized association rules (discussed in Chapter 3), related work includes

[PS91], where quantitative rules of the form x = qx ) y = qy are discovered. However,

the antecedent and consequent are constrained to be a single hattribute,valuei pair.

There are suggestions about extending this work to rules where the antecedent is of

the form l � x � u. This is done by partitioning the quantitative attributes into

intervals; however, the intervals are not combined. The algorithm in [PS91] is fairly

straightforward. To �nd the rules comprising (A = a) as the antecedent, where a is a

speci�c value of the attribute A, one pass over the data is made and each record is hashed

by values of A. Each hash cell keeps a running summary of values of other attributes

for the records with the same A value. The summary for (A = a) is used to derive rules

implied by (A = a) at the end of the pass. To �nd rules for di�erent attributes, the

algorithm is run once on each attribute. Thus if we are interested in �nding all rules,

we must �nd these summaries for all combinations of attributes (which is exponentially

large).

Fukuda et al. [FMMT96a] [FMMT96b] consider the problem of �nding ranges for

up to two quantitative attributes in the antecedent that maximize the support for a

given minimum con�dence, or maximize the con�dence for a given minimum support.

[FMMT96b] considers the case where there are two quantitative attributes in the an-

tecedent, while [FMMT96b] considers the case where there is one quantitative attribute.

Their work is complementary to ours: when the user �nds an interesting rule as a result

of running our algorithm, the rule can be optimized using their approach.
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4.2 Problem Formulation

4.2.1 Problem Statement

We now give a formal statement of the problem of mining Quantitative Association Rules

and introduce some terminology.

We use a simple device to treat categorical and quantitative attributes uniformly.

For categorical attributes, the values of the attribute are mapped to a set of consecutive

integers. (However, values of categorical attributes are not combined. That is, the im-

plicit order imposed on the categorical variables is not used.) For quantitative attributes

that are not partitioned into intervals, the values are mapped to consecutive integers

such that the order of the values is preserved. If a quantitative attribute is partitioned

into intervals, the intervals are mapped to consecutive integers, such that the order of

the intervals is preserved. These mappings let us treat a database record as a set of

hattribute, integer valuei pairs, without loss of generality.

Now, let I = fi1; i2; : : : ; img be a set of literals, called attributes. Let P denote the

set of positive integers. Let IV denote the set I � P. A pair hx; vi 2 IV denotes the

attribute x, with the associated value v. Let IR denote the set fhx; l; ui 2 I � P �

P j l � u; if x is quantitative; l = u; if x is categorical g. Thus, a triple hx; l; ui 2 IR

denotes either a quantitative attribute x with a value in the interval [l; u], or a categorical

attribute x with a value l. We will refer to this triple as an item. For any X � IR, let

attributes(X) denote the set fx j hx; l; ui 2 Xg.

Note that with the above de�nition, only values are associated with categorical at-

tributes, while both values and ranges may be associated with quantitative attributes.

Let D be a set of records, where each record R is a set of attribute values such

that R � IV . We assume that each attribute occurs at most once in a record, i.e.
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attributes are single-valued, not set-valued. We say that a record R supports X � IR, if

8hx; l; ui 2 X (9hx; qi 2 R such that l � q � u).

A quantitative association rule is an implication of the form X ) Y , where X � IR,

Y � IR, and attributes(X) \ attributes(Y ) = ;. The rule X ) Y holds in the record

set D with con�dence c if c% of records in D that support X also support Y . The rule

X ) Y has support s in the record set D if s% of records in D support X [ Y .

Given a set of records D, the problem of mining quantitative association rules is

to �nd all (interesting) quantitative association rules that have support and con�dence

greater than the user-speci�ed minimum support (called minsup) and minimum con-

�dence (called minconf ) respectively. Note that the fact that items in a rule can be

categorical or quantitative has been hidden in the de�nition of an association rule.

Notation Recall that an item is a triple that represents either a categorical attribute

with its value or a quantitative attribute with its range. We use the term itemset to

represent a set of items. The support of an itemset X � IR is simply the percentage of

records in D that support X. We use the term frequent itemset to represent an itemset

with minimum support.

As before, let Pr(X) denote the probability that all the items inX � IR are supported

by a given record. Then support(X ) Y ) = Pr(X [ Y ) and con�dence(X ) Y ) =

Pr(Y j X). (Note that Pr(X [ Y ) is the probability that all the items in X [ Y are

present in the record.) We call cX a generalization of X (and X a specialization of cX)

if attributes(X) = attributes(cX) and 8x 2 attributes(X) [hx; l; ui 2 X ^ hx; l0; u0i 2

cX ) l0 � l � u � u0]. For example, the itemset f hAge: 30..39i, hMarried: Yesi g is a

generalization of f hAge: 30..35i, hMarried: Yesi g. Thus generalizations are similar to

ancestors in the taxonomy.
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4.2.2 Problem Decomposition

We solve the problem of discovering quantitative association rules in �ve steps:

1. Determine the number of partitions and split-points for each quantitative attribute.

(See Section 4.3.)

2. For categorical attributes, map the values of the attribute to a set of consecutive

integers. For quantitative attributes that are not partitioned into intervals, the

values are mapped to consecutive integers such that the order of the values is

preserved. If a quantitative attribute is partitioned into intervals, the intervals are

mapped to consecutive integers, such that the order of the intervals is preserved.

From this point onwards, the algorithm only sees values (or ranges over values)

for quantitative attributes. The fact that these values may represent intervals is

transparent to the algorithm.

3. Find the support for each value of both quantitative and categorical attributes.

Additionally, for quantitative attributes, adjacent values are combined as long as

their support is less than the user-speci�ed max support. We now know all ranges

and values with minimum support for each quantitative attribute as well as all

values with minimum support for each categorical attribute. These form the set of

all frequent items.

Next, �nd all sets of items whose support is greater than the user-speci�ed mini-

mum support. These are the frequent itemsets. (See Section 4.5.)

4. Use the algorithm in Section 2.3 to generate rules from the frequent itemsets.

5. Determine the interesting rules in the output. (See Section 4.4.)
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Example Consider the \People" table shown in Figure 34a. There are two quantitative

attributes, Age and NumCars. Assume that in Step 1, we decided to partition Age into

4 intervals, as shown in Figure 34b. Conceptually, the table now looks as shown in

Figure 34c. After mapping the intervals to consecutive integers, using the mapping in

Figure 34d, the table looks as shown in Figure 34e. Assuming minimum support of 40%

and minimum con�dence of 50%, Figure 34f shows some of the frequent itemsets, and

Figure 34g shows some of the rules. (We have replaced the mapping numbers with the

values in the original table in these last two �gures.) Notice that the item hAge: 20..29i

corresponds to a combination of the intervals 20..24 and 25..29, etc. We have not shown

the step of determining the interesting rules in this example.

4.3 Partitioning Quantitative Attributes

In this section, we consider the questions of when we should partition the values of

quantitative attributes into intervals, how many partitions there should be, and what

the split-points should be. First, we present a measure of partial completeness which

gives a handle on the amount of information lost by partitioning. We then show that

equi-depth partitioning minimizes the number of intervals required to satisfy this partial

completeness level. Thus equi-depth partitioning is, in some sense, optimal for this

measure of partial completeness.

The intuition behind the partial completeness measure is as follows. Let R be the set

of rules obtained by considering all ranges over the raw values of quantitative attributes.

Let R0 be the set of rules obtained by considering all ranges over the partitions of quan-

titative attributes. One way to measure the information loss when we go from R to R0

is to see for each rule in R, how \far" the \closest" rule in R0 is. The further away the

closest rule, the greater the loss. By de�ning \close" rules to be generalizations, and
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Minimum Support = 40% = 2 records
Minimum Con�dence = 50%

People

RecID Age Married NumCars

100 23 No 1
200 25 Yes 1
300 29 No 0
400 34 Yes 2
500 38 Yes 2

Partitions for Age

Interval

20..24
25..29
30..34
35..39

(a) (b)

After partitioning Age

RecID Age Married NumCars

100 20..24 No 0
200 25..29 Yes 1
300 25..29 No 1
400 30..34 Yes 2
500 35..39 Yes 2

Mapping Age

Interval Integer

20..24 1
25..29 2
30..34 3
35..39 4

Mapping
Married

Value Integer

Yes 1
No 2

(c) (d)

After mapping attributes

RecID Age Married NumCars

100 1 2 0
200 2 1 1
300 2 2 1
400 3 1 2
500 4 1 2

Frequent Itemsets (Sample)

Itemset Support

f hAge: 20..29i g 3
f hAge: 30..39i g 2
f hMarried: Yesi g 3
f hMarried: Noi g 2
f hNumCars: 0..1i g 3
f hAge: 30..39i,
hMarried: Yesi g 2

(e) (f)

Rules (Sample)

Rule Support Con�dence

hAge: 30..39i and hMarried: Yesi ) hNumCars: 2i 40% 100%
hAge: 20..29i ) hNumCars: 0..1i 60% 66.6%

(g)

Figure 34: Example of Our Approach
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using the ratio of the support of the rules as a measure of how far apart the rules are,

we derive the measure of partial completeness given below.

4.3.1 Partial Completeness

We �rst de�ne partial completeness over itemsets rather than rules, since we can guar-

antee that a close itemset will be found whereas we cannot guarantee that a close rule

will be found. We then show that we can guarantee that a close rule will be found if

the minimum con�dence level for R0 is less than that for R by a certain (computable)

amount.

Let C denote the set of all frequent itemsets in D. For any K � 1, we call P K-

complete with respect to C if

� P � C,

� X 2 P and X 0 � X ) X 0 2 P, and

� 8X 2 C [9cX 2 P such that

1. cX is a generalization of X and support(cX) � K � support(X), and

2. 8Y � X 9 bY � cX such that bY is a generalization of Y and support( bY ) �
K � support(Y )].

The �rst two conditions ensure that P only contains frequent itemsets and that we can

generate rules from P. The �rst part of the third condition says that for any itemset

in C, there is a generalization of that itemset with at most K times the support in P.

The second part says that the property that the generalization has at most K times

the support also holds for corresponding subsets of attributes in the itemset and its

generalization. Notice that if K = 1, P becomes identical to C.

For example, assume that in some table, the following are the frequent itemsets C:
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Number Itemset Support
1 f hAge: 20..30i g 5%
2 f hAge: 20..40i g 6%
3 f hAge: 20..50i g 8%
4 f hCars: 1..2i g 5%
5 f hCars: 1..3i g 6%
6 f hAge: 20..30i, hCars: 1..2i g 4%
7 f hAge: 20..40i, hCars: 1..3i g 5%

The itemsets 2, 3, 5 and 7 would from a 1.5-complete set, since for any itemset X, either

2, 3, 5 or 7 is a generalization whose support is at most 1.5 times the support of X.

For instance, itemset 2 is a generalization of itemset 1, and the support of itemset 2 is

1.2 times the support of itemset 1. Itemsets 3, 5 and 7 do not form a 1.5-complete set

because for itemset 1, the only generalization among 3, 5 and 7 is itemset 3, and the

support of 3 is more than 1.5 times the support of 1.

Lemma 5 Let P be a K-complete set w.r.t. C, the set of all frequent itemsets. Let RC

be the set of rules generated from C, for a minimum con�dence level minconf. Let RP be

the set of rules generated from P with the minimum con�dence set to minconf/K. Then

for any rule A) B in RC, there is a rule bA) bB in RP such that

� bA is a generalization of A, bB is a generalization of B,

� the support of bA) bB is at most K times the support of A) B, and

� the con�dence of bA) bB is at least 1=K times, and at most K times the con�dence

of A) B.

Proof: Parts 1 and 2 follow directly from the de�nition of K-completeness. We now

prove Part 3. Let A ) B be a rule in RC. Then there is an itemset A [ B in C. By

de�nition of a K-complete set, there is an itemset bA[ bB in P such that (i) support( bA[
bB) � K � support(A [ B), and (ii) support( bA) � K � support(A). The con�dence of
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the rule bA) bB (generated from bA[ bB) is given by support( bA [ bB)/support( bA). Hence
con�dence( bA) bB)
con�dence(A) B)

=

support( bA[bB)
support( bA)
support(A[B)

support(A)

=

support(bA[bB)
support(A[B)

support(bA)
support(A)

Since both support(bA[bB)
support(A[B)

and support(bA)
support(A) lie between 1 and K (inclusive), the con�dence

of bA) bB must be between 1=K and K times the con�dence of A) B. 2

Thus, given a set of frequent itemsets P which is K-complete w.r.t. the set of all

frequent itemsets, the minimum con�dence when generating rules from P must be set to

1=K times the desired level to guarantee that a close rule will be generated.

In the example given earlier, itemsets 2, 3 and 5 form a 1.5-complete set. The rule

\hAge: 20..30i ) hCars: 1..2i" has 80% con�dence, while the corresponding generalized

rule \hAge: 20..40i ) hCars: 1..3i" has 83.3% con�dence.

4.3.2 Determining the Number of Partitions

We �rst prove some properties of partitioned attributes (w.r.t. partial completeness), and

then use these properties to decide the number of intervals given the partial completeness

level.

Lemma 6 Consider a quantitative attribute x, and some real K > 1. Assume we par-

tition x into intervals (called base intervals) such that for any base interval B, either

the support of B is less than minsup� (K � 1)=2 or B consists of a single value. Let P

denote the set of all combinations of base intervals that have minimum support. Then P

is K-complete w.r.t. the set of all ranges over x with minimum support.

Proof: Let X be any interval with minimum support, and cX the smallest combination

of base intervals which is a generalization of X (see Figure 35). There are at most two

base intervals, one at each end, which are only partially spanned by X. Consider either



98

X

X

Base
Interval

Figure 35: Illustration for Lemma 6

of these intervals. If X only partially spans this interval, the interval cannot be just a

single value. Hence the support of this interval, as well as the support of the portion of

the interval not spanned by X, must be less than minsup� (K � 1)=2. Thus

support(cX) � support(X) + 2 �minsup � (K�1)=2

� support(X) + support(X) � (K�1)

(since support(X) > minsup)

� support(X)�K

2

Lemma 7 Consider a set of n quantitative attributes, and some real K > 1. Assume

each quantitative attribute is partitioned such that for any base interval B, either the

support of B is less than minsup � (K � 1)=(2 � n) or B consists of a single value.

Let P denote the set of all frequent itemsets over the partitioned attributes. Then P is

K-complete w.r.t the set of all frequent itemsets (obtained without partitioning).

Proof: Proof: The proof is similar to that for Lemma 6. However, the di�erence in

support between an itemset X and its generalization cX may be 2m times the support

of a single base interval for a single attribute, where m is the number of quantitative

attributes in X. Since X may have up to n attributes, the support of each base interval

must be at most minsup� (K � 1)=(2 � n), rather than just minsup� (K � 1)=2 for P

to be K-complete. A similar argument applies to subsets of X.
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Figure 36: Example for Lemma 7

An illustration of this proof for 2 quantitative attributes is shown in Figure 36. The

solid lines correspond to partitions of the attributes, and the dashed rectangle corre-

sponds to an itemset X. The shaded areas show the extra area that must be covered

to get its generalization cX using partitioned attributes. Each of the 4 shaded areas

spans less than a single partition of a single attribute. (One partition of one attribute

corresponds to a band from one end of the rectangle to another.) 2

Note that Lemma 7 gives a bound for the partial completeness level of P, rather

than the actual level. If Lemma 7 says that P is K-complete w.r.t the set of all frequent

itemsets, P may actually be (K��)-complete, for some � > 0, depending on the data

characteristics. However, it is probably not possible to �nd the largest � such that P

is (K��)-complete without computing the set of all the frequent itemsets. The latter

computation would be very expensive for most datasets.

For any given partitioning, we can use Lemma 7 to compute an upper bound on the

partial completeness level for that partitioning. We �rst illustrate the procedure for a

single attribute. In this case, we simply �nd the partition with highest support among

those with more than one value. Let the support of this partition be s. Then, to �nd the

partial completeness levelK, we use the formula s = minsup�(K�1)=2 from Lemma 6

to get K = 1 + 2 � s=minsup. With n attributes, the formula becomes

K = 1 +
2� n� s

minsup
(2)

where s is the maximum support for a partition with more than one value, among all the

quantitative attributes. Recall that the lower the level of partial completeness, the less
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the information lost. The formula re
ects this: as s decreases, implying more intervals,

the partial completeness level decreases.

Lemma 8 For any speci�ed number of intervals, equi-depth partitioning minimizes the

bound on the partial completeness level.

Proof: From Lemma 7, if the support of each base interval is less than minsup� (K �

1)=(2� n), the partial completeness level is K. Since the maximum support of any base

interval is minimized with equi-depth partitioning, equi-depth partitioning results in the

lowest bound on the partial completeness level. 2

Corollary 1 For a given partial completeness level, equi-depth partitioning minimizes

the number of intervals required to satisfy that partial completeness level.

Given the level of partial completeness desired by the user, and the minimumsupport,

we can calculate the number of partitions required (assuming equi-depth partitioning).

From Lemma 7, we know that to get a partial completeness level K, the support of any

partition with more than one value should be less than minsup � (K � 1)=(2� n) where

n is the number of quantitative attributes. Ignoring the special case of partitions that

contain just one value1, and assuming that equi-depth partitioning splits the support

identically, there should be 1/s partitions in order to get the support of each partition

to less than s. Thus we get

Number of Intervals =
2 � n

m� (K � 1)
(3)

where

n = Number of Quantitative Attributes

1While this may overstate the number of partitions required, it will not increase the partial com-
pleteness level.
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m = Minimum Support (as a fraction)

K = Partial Completeness Level

If there are no rules with more than n0 quantitative attributes, we can replace n with n0

in the above formula (see proof of Lemma 7).

4.4 Interest Measure

A potential problem with combining intervals for quantitative attributes is that the

number of rules found may be very large. In this section, we present a \greater-than-

expected-value" interest measure to identify the interesting rules in the output, based

on intuitions similar to those for the interest measure presented in Section 3.2.1 for tax-

onomies. This interest measure looks at both generalizations and specializations of the

rule to identify the interesting rules. The �rst half of this section focuses on general-

izations, and uses techniques analogous to those in Section 3.2.1. We then incorporate

specializations into the model.

To motivate our interest measure, consider the following rules; assume that roughly

a quarter of people in the age group 20..30 are in the age group 20..25.

hAge: 20..30i ) hCars: 1..2i (8% sup., 70% conf.)

hAge: 20..25i ) hCars: 1..2i (2% sup., 70% conf.)

The second rule can be considered redundant since it does not convey any additional

information and is less general than the �rst rule. Given the �rst rule, we expect that

the second rule would have the same con�dence as the �rst and support equal to a quarter

of the support for the �rst. We try to capture this notion of \interest" by saying that we

only want to �nd rules whose support and/or con�dence is greater than expected. We

now formalize this idea.
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Expected Values Let E
Pr(bZ)[Pr(Z)] denote the \expected" value of Pr(Z) (that is,

the support of Z) based on Pr( bZ), where bZ is a generalization of Z. Let Z be the

itemset fhz1; l1; u1i; : : : ; hzn; ln; unig and bZ the set fhz1; l01; u
0
1i; : : : ; hzn; l

0
n; u

0
nig (where

l0i � li � ui � u0i). Then we de�ne

EPr(bZ)[Pr(Z)] = Pr(hz1; l1; u1i)

Pr(hz1; l01; u
0
1i)

� � � � �
Pr(hzn; ln; uni)

Pr(hzn; l0n; u
0
ni)

� Pr( bZ)
Similarly, we E

Pr(bY j bX)
[Pr(Y jX)] denote the \expected" con�dence of the rule X )

Y based on the rule cX ) bY , where cX and bY are generalizations of X and Y respec-

tively. Let Y be the itemset fhy1; l1; u1i; : : : ; hyn; ln; unig and bY the set fhy1; l01; u
0
1i; : : : ;

hyn; l0n; u
0
nig. Then we de�ne

E
Pr(bY j bX)

[Pr(Y jX)] =
Pr(hy1; l1; u1i)

Pr(hy1; l01; u
0
1i)

� � � � �
Pr(hyn; ln; uni)

Pr(hyn; l0n; u
0
ni)

� Pr( bY j cX)

A Tentative Interest Measure We �rst introduce a measure similar to the one used

in Section 3.2.1.

An itemset Z is R-interesting w.r.t an ancestor bZ if the support of Z is greater than

or equal to R times the expected support based on bZ. A rule X ) Y is R-interesting

w.r.t an ancestor cX ) bY if the support of the rule X ) Y is R times the expected

support based on cX ) bY , or if the con�dence is R times the expected con�dence based

on cX ) bY .
Given a set of rules, we call cX ) bY a close ancestor of X ) Y if there is no rule

X 0 ) Y 0 such that cX ) bY is an ancestor of X 0 ) Y 0 and X 0 ) Y 0 is an ancestor of

X ) Y . A similar de�nition holds for itemsets.

Given a set of rules S and a minimum interest R, a rule X ) Y is interesting (in S)

if it has no ancestors or it is R-interesting with respect to its close ancestors among its

interesting ancestors.
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Figure 37: Example for Interest Measure de�nition

Why looking at generalizations is insu�cient The above de�nition of interest has

the following problem. Consider a single attribute x with the range [1,10], and another

categorical attribute y. Assume the support for the values of x are uniformly distributed.

Let the support for values of x together with y be as shown in Figure 37.2 For instance,

the support of (hx; 5i, y) = 11%, and the support for (hx; 1i, y) = 1%. This �gure also

shows the \average" support for the itemsets (hx; 1; 10i, y), (hx; 3; 5i, y), (hx; 3; 4i, y) and

(hx; 4; 5i, y). Clearly, the only \interesting" set is fhx; 5; 5i, yg. However, the interest

measure given above may also �nd other itemsets \interesting". For instance, with an

interest level of 2, interval \Decoy", fhx; 3; 5i, yg would also be considered interesting,

as would fhx; 4; 6i, yg and fhx; 5; 7i, yg.

If we have the support for each value of x along with y, it is easy to check that

all specializations of an itemset are also interesting. However, in general, we will not

have this information, since a single value of x together with y may not have minimum

support. We will only have information about those specializations of x which (along

with y) have minimum support. For instance, we may only have information about the

support for the subinterval \Interesting" (for interval \Decoy").

2We cannot use a the attribute x without y in this example since expected values are computed from
the support for values single attributes.
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An obvious way to use this information is to check whether there are any specializa-

tions with minimum support that are not interesting. However, there are two problems

with this approach. First, there may not be any specializations with minimum support

that are not interesting. This case is true in the example given above unless the mini-

mum support is less than or equal to 2%. Second, even if there are such specializations,

there may not be any specializations with minimum support that are interesting. We do

not want to discard the current itemset unless there is a specialization with minimum

support that is interesting and some part of the current itemset is not interesting.

An alternative approach is to check whether there are any specializations that are

more interesting than the itemset, and then subtract the specialization from the current

itemset to see whether or not the di�erence is interesting. Notice that the di�erence

need not have minimum support. Further, if there are no such specializations, we would

want to keep this itemset. Thus, this approach is clearly to be preferred. We therefore

change the de�nitions of interest given earlier to re
ect these ideas.

Final Interest Measure An itemset X is R-interesting with respect to cX if the

support of X is greater than or equal to R times the expected support based on cX and

for any specialization X 0 such that X 0 has minimum support and X �X 0 � IR, X �X 0

is R-interesting with respect to cX.

Similarly, a rule X ) Y is R-interesting w.r.t an ancestor cX ) bY if the support of

the ruleX ) Y is R times the expected support based on cX ) bY , or the con�dence is R
times the expected con�dence based on cX ) bY , and the itemset X [ Y is R-interesting

w.r.t cX [ bY .
Note that with the speci�cation of the interest level, the speci�cation of the minimum

con�dence parameter can optionally be dropped. The semantics in that case will be that
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we are interested in all those rules that have interest above the speci�ed interest level.

4.5 Algorithm

In this section, we describe the algorithm for �nding all frequent itemsets (Step 3 of the

problem decomposition given in Section 4.2.2). At this stage, we have already parti-

tioned quantitative attributes, and created combinations of intervals of the quantitative

attributes that have minimum support. These combinations, along with those values of

categorical attributes that have minimum support, form the frequent items.

Starting with the frequent items, we generate all frequent itemsets using an algorithm

based on the Apriori algorithm for �nding boolean association rules given in Section 2.2.1.

The structure of this algorithm is the same as that of the Apriori algorithm shown in

Figure 1. However, the proposed algorithm extends the candidate generation procedure

to add pruning using the interest measure, and uses a di�erent data structure for counting

candidates. We now discuss these two issues in more detail.

4.5.1 Candidate Generation

Given Lk�1, the set of all frequent k�1-itemsets, the candidate generation procedure

must return a superset of the set of all frequent k-itemsets. This procedure has now has

three parts, the �rst two being similar to the corresponding phases for Apriori.

1. Join Phase. Lk�1 is joined with itself, the join condition being that the lexico-

graphically ordered �rst k � 2 items are the same, and that the attributes of the

last two items are di�erent. For example, let L2 consist of the following itemsets:

f hMarried: Yesi hAge: 20..24i g

f hMarried: Yesi hAge: 20..29i g
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f hMarried: Yesi hNumCars: 0..1i g

f hAge: 20..29i hNumCars: 0..1i g

After the join step, C3 will consist of the following itemsets:

f hMarried: Yesi hAge: 20..24i hNumCars: 0..1i g

f hMarried: Yesi hAge: 20..29i hNumCars: 0..1i g

2. Subset Prune Phase All itemsets from the join result which have some (k�1)-

subset that is not in Lk�1 are deleted. Continuing the earlier example, the prune

step will delete the itemset f hMarried: Yesi hAge: 20..24i hNumCars: 0..1i g since

its subset f hAge: 20..24i hNumCars: 0..1i g is not in L2.

3. Interest Prune Phase. If the user speci�es an interest level, and wants only item-

sets whose support and con�dence is greater than expected, the interest measure

is used to prune the candidates further. Lemma 9, given below, says that we can

delete any itemset that contains a quantitative item whose (fractional) support is

greater than 1=R, where R is the interest level. If we delete all items whose support

is greater than 1=R at the end of the �rst pass, the candidate generation procedure

will ensure that we never generate candidates that contain an item whose support

is more than 1=R.

Lemma 9 Consider an itemset X, with a quantitative item x. Let cX be the generaliza-

tion of X where x is replaced by the item corresponding to the full range of attribute(x).

Let the user-speci�ed interest level be R. If the support of x is greater than 1=R, then

the actual support of X cannot be more than R times the expected support based on cX .

Proof: The actual support of X cannot be greater than the actual support of cX . The

expected support of X w.r.t. cX is Pr(cX)�Pr(x), since Pr(bx) equals 1. Thus the ratio of
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the actual to the expected support of X is Pr(X)=(Pr(cX)�Pr(x)) = (Pr(X)=Pr(cX))�

(1=Pr(x)). The �rst ratio is less than or equal to 1, and the second ratio is less than R.

Hence the ratio of the actual to the expected support is less than R. 2

4.5.2 Counting Support of Candidates

While making a pass, we read one record at a time and increment the support count of

candidates supported by the record. Thus, given a set of candidate itemsets C and a

record R, we need to �nd all itemsets in C that are supported by R.

We partition candidates into groups such that candidates in each group have the

same attributes and the same values for their categorical attributes. We replace each

such group with a single \super-candidate". Each \super-candidate" has two parts: (i)

the common categorical attribute values, and (ii) a data structure representing the set

of values of the quantitative attributes.

For example, consider the candidates:

f hMarried: Yesi hAge: 20..24i, hNumCars: 0..1i g

f hMarried: Yesi hAge: 20..29i, hNumCars: 1..2i g

f hMarried: Yesi hAge: 24..29i, hNumCars: 2..2i g

These candidates have one categorical attribute, \Married", whose value, \Yes" is the

same for all three candidates. Their quantitative attributes, \Age" and \NumCars" are

also the same. Hence these candidates can be grouped together into a super-candidate.

The categorical part of the super-candidate contains the item hMarried: Yesi. The quan-

titative part contains the following information.

Age NumCars
20..24 0..1
20..29 1..2
24..29 2..2
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We can now split the problem into two parts:

1. We �rst �nd which \super-candidates" are supported by the categorical attributes

in the record. We re-use the hash-tree data structure described in Section 2.2.1 to

reduce the number of super-candidates that need to be checked for a given record.

2. Once we know that the categorical attributes of a \super-candidate" are supported

by a given record, we need to �nd which of the candidates in the super-candidate

are supported. (Recall that while all candidates in a super-candidate have the same

values for their categorical values, they have di�erent values for their quantitative

attributes.) We discuss this issue in the rest of this section.

Let a \super-candidate" have n quantitative attributes. The quantitative attributes

are �xed for a given \super-candidate". Hence the set of values for the quantitative

attributes correspond to a set of n-dimensional rectangles (each rectangle corresponding

to a candidate in the super-candidate). The values of the corresponding quantitative

attributes in a database record correspond to an n-dimensional point. Thus the problem

reduces to �nding which n-dimensional rectangles contain a given n-dimensional point,

for a set of n-dimensional points. One classic solution to this problem is to put the

rectangles in an R�-tree [BKSS90].

If the number of dimensions is small, and the range of values in each dimension

is also small, there is a faster solution. Namely, we use a n-dimensional array, where

the number of array cells in the j-th dimension equals the number of partitions for

the attribute corresponding to the j-th dimension. We use this array to get support

counts for all possible combinations of values of the quantitative attributes in the super-

candidate. The amount of work done per record is only O(number-of-dimensions), since

we simply index into each dimension and increment the support count for a single cell.
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At the end of the pass over the database, we iterate over all the cells covered by each of

the rectangles and sum up the support counts.

Using a multi-dimensional array is cheaper than using an R�-tree, in terms of CPU

time. However, as the number of attributes (dimensions) in a super-candidate increases,

the multi-dimensional array approach will need a huge amount of memory. Thus there

is a tradeo� between less memory for the R�-tree versus less CPU time for the multi-

dimensional array. We use the following heuristic for choosing the data structure: if the

ratio of the expected memory use of the R�-tree to that of the multi-dimensional array

is below a certain threshold, we use the array, else the R� tree.

4.6 Experience with a Real-Life Dataset

We assessed the e�ectiveness of our approach by experimenting with a real-life dataset.

The data had 7 attributes: 5 quantitative and 2 categorical. The quantitative attributes

were monthly-income, credit-limit, current-balance, year-to-date balance, and year-to-

date interest. The categorical attributes were employee-category and marital-status.

There were 500,000 records in the data.

Our experiments were performed on an IBM RS/6000 250 workstation with 128 MB

of main memory running AIX 3.2.5. The data resided in the AIX �le system and was

stored on a local 2GB SCSI 3.5" drive, with measured sequential throughput of about 2

MB/second.

Partial Completeness Level Figure 38 shows the number of interesting rules, and

the percent of rules found to be interesting, for di�erent interest levels as the partial

completeness level increases from 1.5 to 5. The minimum support was set to 20%,

minimum con�dence to 25%, and maximum support to 40%. As expected, the number
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of interesting rules decreases as the partial completeness level increases. The percentage

of rules pruned also decreases, indicating that fewer similar rules are found as the partial

completeness level increases and there are fewer intervals for the quantitative attributes.

Interest Measure Figure 39 shows the fraction of rules identi�ed as \interesting" as

the interest level was increased from 0 (equivalent to not having an interest measure) to

2. As expected, the percentage of rules identi�ed as interesting decreases as the interest

level increases.

Scale-up The running time for the algorithm can be split into two parts:



111

1. Candidate generation The time for this is independent of the number of records,

assuming that the distribution of values in each record is similar.

2. Counting supportThe time for this is directly proportional to the number of records,

again assuming that the distribution of values in each record is similar. When the

number of records is large, this time will dominate the total time.

Thus we would expect the algorithm to have near-linear scaleup. This is con�rmed by

Figure 40, which shows the relative execution time as we increase the number of input

records 10-fold from 50,000 to 500,000, for three di�erent levels of minimum support.

The times have been normalized with respect to the times for 50,000 records. The graph

shows that the algorithm scales quite linearly for this dataset.

4.7 Summary

In this chapter, we introduced the problem of mining association rules in large rela-

tional tables containing both quantitative and categorical attributes. We dealt with

quantitative attributes by �ne-partitioning the values of the attribute and then combin-

ing adjacent partitions as necessary. We introduced a measure of partial completeness

which quanti�es the information lost due to partitioning. This measure is used to decide

whether or not to partition a quantitative attribute, and if so, the number of partitions.

A direct application of this technique may generate too many similar rules. We tack-

led this problem by using a \greater-than-expected-value" interest measure to identify

the interesting rules in the output. This interest measure looks at both generalizations

and specializations of the rule to identify the interesting rules.

We gave an algorithm for mining such quantitative association rules. Our experiments

on a real-life dataset indicate that the algorithm scales linearly with the number of

records. They also showed that the interest measure was e�ective in identifying the
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interesting association rules.
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Chapter 5

Mining Sequential Patterns

5.1 Introduction

In this chapter, we introduce a new data mining problem, discovering sequential patterns,

that is closely related to the problem of mining association rules. The input data is a set

of sequences, called data-sequences. Each data-sequence is a list of transactions, where

each transaction is a sets of literals, called items. Typically there is a transaction-time

associated with each transaction. A sequential pattern also consists of a list of sets of

items. The problem is to �nd all sequential patterns with a user-speci�ed minimum

support, where the support of a sequential pattern is the percentage of data-sequences

that contain the pattern.

For example, in the database of a book club, each data-sequence may correspond

to all book selections of a customer, and each transaction to the books selected by

the customer in one order. A sequential pattern might be \5% of customers bought

`Foundation', then `Foundation and Empire', and then `Second Foundation' ". The data-

sequence corresponding to a customer who bought some other books in between these

books still contains this sequential pattern; the data-sequence may also have other books

in the same transaction as one of the books in the pattern. Elements of a sequential

pattern can be sets of items, for example, \ `Foundation' and `Ringworld', followed by

`Foundation and Empire' and `Ringworld Engineers', followed by `Second Foundation' ".

However, all the items in an element of a sequential pattern must be present in a single

transaction for the data-sequence to support the pattern.
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This problem was motivated by applications in the retailing industry, including at-

tached mailing, add-on sales, and customer satisfaction. In addition, the results apply

to many scienti�c and business domains. For instance, in the medical domain, a data-

sequence may correspond to the symptoms or diseases of a patient, with a transaction

corresponding to the symptoms exhibited or diseases diagnosed during a visit to the

doctor. The patterns discovered using this data could be used in disease research to help

identify symptoms/diseases that precede certain diseases.

In [AS95], we had introduced the above problem formulation and presented an al-

gorithm for this problem. However, the above problem de�nition has the following

limitations:

1. Absence of time constraints. Users often want to specify maximum and/or

minimum time gaps between adjacent elements of the sequential pattern. For

example, a book club probably does not care if someone bought \Foundation",

followed by \Foundation and Empire" three years later; they may want to specify

that a customer should support a sequential pattern only if adjacent elements occur

within a speci�ed time interval, say three months. (So for a customer to support

this pattern, the customer should have bought \Foundation and Empire" within

three months of buying \Foundation").

2. Rigid de�nition of a transaction. For many applications, it does not matter if

items in an element of a sequential pattern were present in two di�erent transac-

tions, as long as the transaction-times of those transactions are within some small

time window. That is, each element of the pattern can be contained in the union

of the items bought in a set of transactions as long as the di�erence between the

maximum and minimum transaction-times is less than the size of a sliding time
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Foundation

Science Fiction

and Empire
Foundation

People

NivenAsimov

Smiley’sPerfect SpyRingworld
Engineers

RingworldSecond
Foundation

Le Carre

Spy

Figure 41: Example of a Taxonomy

window. For example, if the book club speci�es a time window of a week, a cus-

tomer who ordered the \Foundation" on Monday, \Ringworld" on Saturday, and

then \Foundation and Empire" and \Ringworld Engineers" in a single order a few

weeks later would still support the pattern \ `Foundation' and `Ringworld', followed

by `Foundation and Empire' and `Ringworld Engineers' ".

3. Absence of taxonomies. Many datasets have a user-de�ned taxonomy (isa hi-

erarchy) over the items in the data, and users want to �nd patterns that include

items across di�erent levels of the taxonomy. An example of a taxonomy is given

in Figure 41. With this taxonomy, a customer who bought \Foundation" followed

by \Perfect Spy" would support the patterns \ `Foundation' followed by `Perfect

Spy' ", \ `Asimov' followed by `Perfect Spy' ", \ `Science Fiction' followed by `Le

Carre' ", etc.

In this chapter, we generalize the problem de�nition given in [AS95] to incorpo-

rate time constraints, sliding time windows, and taxonomies in sequential patterns. We

present GSP (Generalized Sequential Patterns), a new algorithm that discovers all such

sequential patterns. Empirical evaluation shows that GSP scales linearly with the num-

ber of data-sequences, and has very good scale-up properties with respect to the number

of transactions per data-sequence and number of items per transaction.

In addition to introducing the problem of sequential patterns, [AS95] presented three
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algorithms for solving this problem, but these algorithms do not handle time constraints,

sliding windows, or taxonomies. Two of these algorithms were designed to �nd only

maximal sequential patterns; however, many applications require all patterns and their

supports. The third algorithm, AprioriAll, �nds all patterns; its performance was better

than or comparable to the other two algorithms. We review AprioriAll in Section 5.4.1.

Brie
y, AprioriAll is a three-phase algorithm. It �rst �nds all itemsets with minimum

support (frequent itemsets), transforms the database so that each transaction is replaced

by the set of all frequent itemsets contained in the transaction, and then �nds sequential

patterns. There are two problems with this approach. First, it is computationally expen-

sive to do the data transformation on-the-
y during each pass while �nding sequential

patterns. The alternative, to transform the database once and store the transformed

database, will be infeasible or unrealistic for many applications since it nearly doubles

the disk space requirement (which could be prohibitive for large databases). Second,

while it is possible to extend this algorithm to handle time constraints and taxonomies,

it does not appear feasible to incorporate sliding windows. For the cases that the ex-

tended AprioriAll can handle, our empirical evaluation reported in Section 5.4 shows

that new GSP algorithm is up to 20 times faster.

The rest of this Chapter is organized as follows. We give a formal description of

the problem of mining generalized sequential patterns in Section 5.2. In Section 5.3, we

describe GSP, our algorithm for �nding such patterns. In Section 5.4, we compare the

performance of GSP to the AprioriAll algorithm, show the scale-up properties of GSP,

and study the performance impact of time constraints and sliding windows. We conclude

with a summary in Section 5.5.
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Related Work

The problem of mining association rules, described in Chapter 2, is relevant. Association

rules are rules about what items are bought together within a transaction, and are thus

intra-transaction patterns, unlike inter-transaction sequential patterns. The problem

of �nding association rules when there is a user-de�ned taxonomy on items has been

addressed in Chapter 3.

The problem of discovering similarities in a database of genetic sequences, discussed

in [WCM+94], is relevant. However, the patterns they wish to discover are subsequences

made up of consecutive characters separated by a variable number of noise characters.

A sequence in our problem consists of list of sets of characters (items), rather than being

simply a list of characters. In addition, we are interested in �nding all sequences with

minimum support rather than some frequent patterns.

A problem of discovering frequent episodes in a sequence of events was presented

in [MTV95]. Their patterns are arbitrary DAGs (directed acyclic graphs), where each

vertex corresponds to a single event (or item) and an edge from event A to event B

denotes that A occurred before B. They move a time window across the input sequence

and �nd all patterns that occur in some user-speci�ed percentage of all windows. Their

algorithm is designed for counting the number of occurrences of a pattern when moving

a window across a single sequence, while we are interested in �nding patterns that occur

in many di�erent data-sequences.

Discovering patterns in sequences of events has been an area of active research in AI

(see, for example, [DM85]). However, the focus in this body of work is on �nding the rule

underlying the generation of a given sequence in order to be able to predict a plausible

sequence continuation (e.g. the rule to predict what number will come next, given a
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sequence of numbers). We, on the other hand, are interested in �nding all common

patterns embedded in a database of sequences of sets of events (items).

Our problem is related to the problem of �nding text subsequences that match a given

regular expression (c.f. the UNIX grep utility). There also has been work on �nding text

subsequences that approximately match a given string (e.g. [CR93] [WM92]). These

techniques are oriented toward �nding matches for one pattern. In our problem, the

di�culty is in �guring out what patterns to try and then e�ciently �nding out which of

those patterns are contained in enough data sequences.

Techniques based on multiple alignment [Wat89] have been proposed to �nd entire

text sequences that are similar. There also has been work to �nd locally similar subse-

quences [AGM+90] [Roy92] [VA89]. However, as pointed out in [WCM+94], these tech-

niques apply when the discovered patterns consist of consecutive characters or multiple

lists of consecutive characters separated by a �xed length of noise characters.

5.2 Problem Formulation

De�nitions As before, let I = fi1; i2; : : : ; img be a set of literals, called items. Let T

be a directed acyclic graph on the literals. An edge in T represents an isa relationship,

and T represents a set of taxonomies. If there is an edge in T from p to c, we call

p a parent of c and c a child of p. (The item p represents a generalization of c). We

call bx an ancestor of x (and x a descendant of bx) if there is an edge from bx to x in

transitive-closure(T ).

An itemset is a non-empty set of items. A sequence is an ordered list of itemsets. We

denote a sequence s by h s1s2:::sn i, where sj is an itemset. We also call sj an element of

the sequence. We denote an element of a sequence by (x1; x2; :::; xm), where xj is an item.

An item can occur only once in an element of a sequence, but can occur multiple times
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in di�erent elements. An itemset is considered to be a sequence with a single element.

We assume without loss of generality that the items in an element of a sequence (i.e. in

an itemset) are in lexicographic order.

A sequence h a1a2:::an i is a subsequence of another sequence h b1b2:::bm i if there exist

integers i1 < i2 < ::: < in such that a1 � bi1, a2 � bi2, ..., an � bin. For example, the

sequence h (3) (4 5) (8) i is a subsequence of h (7) (3, 8) (9) (4, 5, 6) (8) i, since (3) � (3,

8), (4, 5) � (4, 5, 6) and (8) � (8). However, the sequence h (3) (5) i is not a subsequence

of h (3, 5) i (and vice versa).

Input We are given a database D of sequences called data-sequences. Each data-

sequence is a list of transactions, ordered by increasing transaction-time. A transaction

has the following �elds: sequence-id, transaction-id, transaction-time, and the items

present in the transaction. While we expect the items in a transaction to be leaves in T ,

we do not require this.

For simplicity, we assume that no data-sequence has more than one transaction with

the same transaction-time, and we use the transaction-time as the transaction-identi�er.

We do not consider quantities of items in a transaction.

Support The support count (or simply support) for a sequence is de�ned as the fraction

of total data-sequences that \contain" this sequence. (Although the word \contains" is

not strictly accurate once we incorporate taxonomies, it captures the spirt of when a

data-sequence contributes to the support of a sequential pattern.) We now de�ne when

a data-sequence contains a sequence, starting with the de�nition as in [AS95], and then

adding taxonomies, sliding windows, and time constraints:
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� as in [AS95]: In the absence of taxonomies, sliding windows, and time constraints,

a data-sequence contains a sequence s if s is a subsequence of the data-sequence.

� plus taxonomies: We say that a transaction T contains an item x 2 I if x is

in T or x is an ancestor of some item in T . We say that a transaction T contains

an itemset y � I if T contains every item in y. A data-sequence d = h d1:::dm i

contains a sequence s = h s1:::sn i if there exist integers i1 < i2 < ::: < in such that

s1 is contained in di1 , s2 is contained in di2 , ..., sn is contained in din . If there is

no taxonomy, this degenerates into a simple subsequence test.

� plus sliding windows: The sliding window generalization relaxes the de�nition

of when a data-sequence contributes to the support of a sequence by allowing a

set of transactions to contain an element of a sequence as long as the di�erence in

transaction-times between the transactions in the set is less than the user-speci�ed

window-size. Formally, a data-sequence d = h d1:::dm i contains a sequence s =

h s1:::sn i if there exist integers l1 � u1 < l2 � u2 < ::: < ln � un such that

1. si is contained in [uik=lidk, 1 � i � n, and

2. transaction-time(dui)� transaction-time(dli) � window-size, 1 � i � n.

� plus time constraints: Time constraints restrict the time gap between sets

of transactions that contain consecutive elements of the sequence. Given user-

speci�ed window-size, max-gap and min-gap, a data-sequence d = h d1:::dm i con-

tains a sequence s = h s1:::sn i if there exist integers l1 � u1 < l2 � u2 < ::: < ln �

un such that

1. si is contained in [uik=lidk, 1 � i � n,

2. transaction-time(dui)� transaction-time(dli) � window-size, 1 � i � n,

3. transaction-time(dli)� transaction-time(dui�1) > min-gap, 2 � i � n, and
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4. transaction-time(dui)� transaction-time(dli�1) � max-gap, 2 � i � n.

The �rst two conditions are the same as in the earlier de�nition of when a data-

sequence contains a pattern. The third condition speci�es the minimum time-gap

constraint, and the last one speci�es the maximum time-gap constraint.

We will refer to transaction-time(dli) as start-time(si), and transaction-time(dui)

as end-time(si). In other-words, start-time(si) and end-time(si) correspond to the

�rst and last transaction-times of the set of transactions that contain si.

Note that if there is no taxonomy, min-gap = 0, max-gap =1 and window-size = 0

we get the notion of sequential patterns as introduced in [AS95], where there are no time

constraints and items in an element come from a single transaction.

5.2.1 Problem Statement

Given a database D of data-sequences, a taxonomy T , user-speci�ed min-gap and max-

gap time constraints, and a user-speci�ed sliding-window size, the generalized problem

of mining sequential patterns is to �nd all sequences whose support is greater than the

user-speci�ed minimum support. Each such sequence represents a sequential pattern,

also called a frequent sequence.

Given a frequent sequence s = h s1:::sn i, it is often useful to know the \support rela-

tionship" between the elements of the sequence, i.e., what fraction of the data-sequences

that support h s1:::si i support the entire sequence s. Since h s1:::si i must also be a

frequent sequence, this relationship can easily be computed.

5.2.2 Example

Consider the data-sequences shown in Figure 42. For simplicity, we have assumed that

the transaction-times are integers; they could represent, for instance, the number of days
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Database D
Sequence-Id Transaction Items

Time
C1 1 Ringworld
C1 2 Foundation
C1 15 Ringworld Engineers, Second Foundation
C2 1 Foundation, Ringworld
C2 20 Foundation and Empire
C2 50 Ringworld Engineers

Taxonomy T

Foundation
and Empire
Foundation

Foundation

NivenAsimov

Ringworld
Engineers

RingworldSecond

Figure 42: Dataset for Example

after January 1, 1995. We have used an abbreviated version of the taxonomy given in

Figure 41. Assume that the minimum support has been set to 2 data-sequences.

With the [AS95] problem de�nition, the only 2-element sequential patterns are:

h (Ringworld) (Ringworld Engineers) i,

h (Foundation) (Ringworld Engineers) i

Setting a sliding-window of 7 days adds the pattern

h (Foundation, Ringworld) (Ringworld Engineers) i

since C1 now supports this pattern. (\Foundation" and \Ringworld" are present within

a period of 7 days in data-sequence C1.)

Further setting a max-gap of 30 days results in all three patterns being dropped, since

they are no longer supported by customer C2.
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L1 := ffrequent 1-item sequencesg;
k := 2; // k represents the pass number
while ( Lk�1 6= ; ) do begin

Ck := New candidates of size k generated from Lk�1;
forall sequences S 2 D do begin

Increment the count of all candidates in Ck that are contained in S.
end
Lk := All candidates in Ck with minimum support.
k := k + 1;

end

Answer :=
S
k Lk;

Figure 43: GSP Algorithm Overview

If we only add the taxonomy, but no sliding-window or time constraints, one of the

patterns added is:

h (Foundation) (Asimov) i

Observe that this pattern is not simply a replacement of an item with its ancestor in

an existing pattern. That is, without the taxonomy, there was no specialization of

h (Foundation) (Asimov) i in the set of sequential patterns.

5.3 GSP Algorithm

The basic structure of the GSP algorithm is very similar to the Apriori algorithm (Fig-

ure 1), except that GSP deals with sequences rather than itemsets. The di�erences

between Apriori and GSP are in the details of candidate generation and counting item-

sets. Figure 43 shows an overview of the GSP algorithm. Lk and Ck refer to frequent

k-sequences and candidate k-sequences respectively.

We need to specify two key details:

1. Candidate generation: how candidates sequences are generated before the pass
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begins. We want to generate as few candidates as possible while maintaining com-

pleteness.

2. Counting candidates: how the support count for the candidate sequences is

determined.

Candidate generation is discussed in Section 5.3.1, and candidate counting in Section 5.3.2.

We incorporate time constraints and sliding windows in this discussion, but do not

consider taxonomies. Extensions required to handle taxonomies are described in Sec-

tion 5.3.3.

Our algorithm is not a main-memory algorithm; memory management is similar to

that for the Apriori algorithm. The essential idea there was that we only generate as

many candidates as �t in memory, make a pass to count their support, save the frequent

sequences to disk, generate more candidates and so on. Thus we may make multiple

passes to count Ck if there is insu�cient memory.

5.3.1 Candidate Generation

We refer to a sequence with k items as a k-sequence. (If an item occurs multiple times

in di�erent elements of a sequence, each occurrence contributes to the value of k.) Let

Lk denote the set of all frequent k-sequences, and Ck the set of candidate k-sequences.

Given Lk�1, the set of all frequent (k�1)-sequences, we want to generate a superset of

the set of all frequent k-sequences. We �rst de�ne the notion of a contiguous subsequence.

De�nition Given a sequence s = h s1s2:::sn i and a subsequence c, c is a contiguous

subsequence of s if any of the following conditions hold:

1. c is derived from s by dropping an item from either s1 or sn.
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2. c is derived from s by dropping an item from an element si which has at least 2

items.

3. c is a contiguous subsequence of c0, and c0 is a contiguous subsequence of s.

For example, consider the sequence s = h (1, 2) (3, 4) (5) (6) i. The sequences h (2) (3,

4) (5) i, h (1, 2) (3) (5) (6) i and h (3) (5) i are some of the contiguous subsequences of s.

However, h (1, 2) (3, 4) (6) i and h (1) (5) (6) i are not.

As we will show in Lemma 10 below, any data-sequence that contains a sequence s

will also contain any contiguous subsequence of s. If there is no max-gap constraint, the

data-sequence will contain all subsequences of s (including non-contiguous subsequences).

This property provides the basis for the candidate generation procedure.

Candidates are generated in two steps:

1. Join Phase. We generate candidate sequences by joining Lk�1 with Lk�1. A

sequence s1 joins with s2 if the subsequence obtained by dropping the �rst item of

s1 is the same as the subsequence obtained by dropping the last item of s2. The

candidate sequence generated by joining s1 with s2 is the sequence s1 extended

with the last item in s2. The added item becomes a separate element if it was a

separate element in s2, and part of the last element of s1 otherwise. When joining

L1 with L1, we need to add the item in s2 both as part of an itemset and as a

separate element, since both h (x) (y) i and h (x y) i give the same sequence h (y) i

upon deleting the �rst item. (Observe that s1 and s2 are contiguous subsequences

of the new candidate sequence.)

2. Prune Phase. We delete candidate sequences that have a contiguous (k�1)-

subsequence whose support count is less than the minimum support. If there is no

max-gap constraint, we also delete candidate sequences that have any subsequence
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Frequent Candidate 4-Sequences
3-Sequences after join after pruning
h (1, 2) (3) i h (1, 2) (3, 4) i h (1, 2) (3, 4) i
h (1, 2) (4) i h (1, 2) (3) (5) i
h (1) (3, 4) i
h (1, 3) (5) i
h (2) (3, 4) i
h (2) (3) (5) i

Figure 44: Candidate Generation: Example

without minimum support.

The above procedure is reminiscent of the candidate generation procedure for �nding

association rules given in Section 2.2.1; however its details are quite di�erent.

Example Figure 44 shows L3 and C4 after the join and prune phases. In the join

phase, the sequence h (1, 2) (3) i joins with h (2) (3, 4) i to generate h (1, 2) (3, 4) i and

with h (2) (3) (5) i to generate h (1, 2) (3) (5) i. The remaining sequences do not join

with any sequence in L3. For instance, h (1, 2) (4) i does not join with any sequence

since there is no sequence of the form h (2) (4 x) i or h (2) (4) (x) i. In the prune phase,

h (1, 2) (3) (5) i is dropped since its contiguous subsequence h (1) (3) (5) i is not in L3.

Correctness We need to show that Ck � Lk. We �rst prove the following lemma.

Lemma 10 If a data-sequence d contains a sequence s, d will also contain any contigu-

ous subsequence of s. If there is no max-gap constraint, d will contain any subsequences

of s.

Proof: Let c denote any contiguous subsequence of s obtained by dropping just one

item from s. If we show that any data-sequence that contains s also contains c, we can

use induction to show that the data-sequence will contain any contiguous subsequence

of s.
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Let s have n elements, that is, s = h s1::sn i. Now, c either has n elements or n � 1

elements. Let us �rst consider the case where c has n elements; so c = h c1::cn i. Let

l1; u1; :::; ln; un de�ne the transactions in d that supported s; that is, si is contained in

[uik=lidk, 1 � i � n. In other words, li and ui together de�ne the set of transactions in

d that contain si. Now, since ci � si, ci is also contained in [uik=lidk, 1 � i � n. Since

l1; u1; :::; ln; un satis�ed the min-gap, max-gap and window-size constraints for s, they

also satisfy the constraints for c. Thus d contains c.

If c has n�1 elements, either the �rst or the last element of s consisted of a single item

and was dropped completely. In this case, we use a similar argument to show that d con-

tains c, except that we just look at the transactions corresponding to l1; u1; :::; ln�1; un�1

or those corresponding to l2; u2; :::; ln; un. 2

Theorem 2 Given Lk�1, the set of all frequent (k�1)-sequences, the candidate generation

procedure produces a superset of Lk, the set of all frequent k-sequences.

Proof: From Lemma 10, if we extended each sequence in Lk�1 with every frequent item,

and then deleted all those whose contiguous (k�1)-subsequences were not in Lk�1, we

would be left with a superset of the sequences in Lk. This join is equivalent to extending

Lk�1 with each frequent item and then deleting those sequences for which the (k�1)-

subsequence obtained by deleting the �rst item is not in Lk�1. Note that the subsequence

obtained by deleting the �rst item is a contiguous subsequence. Thus, after the join step,

Ck � Lk. By similar reasoning, the prune step, where we delete from Ck all sequences

whose contiguous (k�1)-subsequences are not in Lk�1, also does not delete any sequence

that could be in Lk. 2
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5.3.2 Counting Support of Candidates

While making a pass, we read one data-sequence at a time and increment the support

count of candidates contained in the data-sequence. Thus, given a set of candidate

sequences C and a data-sequence d, we need to �nd all sequences in C that are contained

in d. We use two techniques to solve this problem:

1. We use a hash-tree data structure to reduce the number of candidates in C that

are checked for a data-sequence.

2. We transform the representation of the data-sequence d so that we can e�ciently

�nd whether a speci�c candidate is a subsequence of d.

Reducing the number of candidates that need to be checked

We adapt the hash-tree data structure of Section 2.2.1 for this purpose. A node of the

hash-tree either contains a list of sequences (a leaf node) or a hash table (an interior

node). In an interior node, each non-empty bucket of the hash table points to another

node. The root of the hash-tree is de�ned to be at depth 1. An interior node at depth

p points to nodes at depth p+1.

Adding candidate sequences to the hash-tree When we add a sequence s, we

start from the root and go down the tree until we reach a leaf. At an interior node at

depth p, we decide which branch to follow by applying a hash function to the pth item

of the sequence. (Note that we apply the hash function to the pth item, not the pth

element.) All nodes are initially created as leaf nodes. When the number of sequences

in a leaf node exceeds a threshold, the leaf node is converted to an interior node.

Finding the candidates contained in a data-sequence Starting from the root

node, we �nd all the candidates contained in a data-sequence d. We apply the following
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procedure, based on the type of node that we are currently at:

� Interior node, if it is the root: We apply the hash function to each item in d, and

recursively apply this procedure to the node in the corresponding bucket. For any

sequence s contained in the data-sequence d, the �rst item of s must be in d. By

hashing on every item in d, we ensure that we only ignore sequences that start with

an item not in d.

� Interior node, if it is not the root: Assume we reached this node by hashing on an

item x whose transaction-time is t. We apply the hash function to each item in d

whose transaction-time is in [t�window-size; t+max(window-size;max-gap)] and

recursively apply this procedure to the node in the corresponding bucket.

To see why this returns the desired set of candidates, consider a candidate se-

quence s with two consecutive items x and y. Let x be contained in a transaction

in d whose transaction-time is t. For d to contain s, the transaction-time corre-

sponding to y must be in [t�window-size; t+window-size] if y is part of the same

element as x, or in the interval (t; t+max-gap] if y is part of the next element.

Hence, if we reached this node by hashing on an item x with transaction-time

t, y must be contained in a transaction whose transaction-time is in the interval

[t�window-size; t+max(window-size;max-gap)] for the data-sequence to support

the sequence. Thus, we only need to apply the hash function to the items in d whose

transaction-times are in the above interval and check the corresponding nodes.

� Leaf node: For each sequence s in the leaf, we check whether d contains s and

add s to the answer set if necessary. (We will discuss below exactly how to �nd

out whether or not d contains a speci�c candidate sequence.) Since we check each

sequence contained in this node, we don't miss any sequences.
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Checking whether a data-sequence contains a speci�c sequence

Let d be a data-sequence, and let s = h s1:::sn i be a candidate sequence. We �rst describe

the algorithm for checking if d contains s, assuming the existence of a procedure that

�nds the �rst occurrence of an element of s in d after a given time; we then describe this

procedure as well.

Contains test The algorithm for checking if the data-sequence d contains a candidate

sequence s alternates between two phases. The algorithm starts in the forward phase

from the �rst element.

� Forward phase: The algorithm �nds successive elements of s in d as long as the

di�erence between the end-time of the element just found and the start-time of

the previous element is less than max-gap. (Recall that for an element si, start-

time(si) and end-time(si) correspond to the �rst and last transaction-times of the

set of transactions that contain si.) If the di�erence is more than max-gap, the

algorithm switches to the backward phase. If an element is not found, the data-

sequence does not contain s.

� Backward phase: The algorithm backtracks and \pulls up" previous elements.

If si is the current element and end-time(si) = t, the algorithm �nds the �rst set

of transactions containing si�1 whose transaction-times are after t�max-gap. The

start-time for si�1 (after si�1 is pulled up) could be after the end-time for si. Pulling

up si�1 may necessitate pulling up si�2 because the max-gap constraint between

si�1 and si�2 may no longer be satis�ed. The algorithm moves backwards until

either the max-gap constraint between the element just pulled up and the previous

element is satis�ed, or the �rst element has been pulled up. The algorithm then

switches to the forward phase, �nding elements of s in d starting from the element
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after the last element pulled up. If any element cannot be pulled up (that is, there

is no subsequent set of transactions which contain the element), the data-sequence

does not contain s.

This procedure is repeated, switching between the backward and forward phases, until all

the elements are found. Though the algorithm moves back and forth among the elements

of s, it still terminates. For any element si, the algorithm always checks whether a later

set of transactions contains si. So the transaction-times for an element always increase.

Example Consider the data-sequence shown in Figure 45. Consider the case when

max-gap is 30, min-gap is 5, and window-size is 0. For the candidate-sequence

h (1, 2) (3) (4) i, we would �rst �nd (1, 2) at transaction-time 10, and then �nd (3)

at time 45. Since the gap between these two elements (35 days) is more than max-gap,

we \pull up" (1, 2). We search for the �rst occurrence of (1, 2) after time 15, because

end-time((3)) = 45 and max-gap is 30, and so occurences of (1, 2) at some time before

15 will not satisfy the max-gap constraint. We �nd (1, 2) at time 50. Since this is the

�rst element, we do not have to check to see if the max-gap constraint between (1, 2) and

the element before that is satis�ed. We now move forward. Since (3) no longer occurs

more than 5 days after (1, 2), we search for the next occurrence of (3) after time 55. We

�nd (3) at time 65. Since the max-gap constraint between (3) and (1, 2) is satis�ed, we

continue to move forward and �nd (4) at time 90. The max-gap constraint between (4)

and (3) is satis�ed, so we are done.

Finding a single element To describe the procedure for �nding the �rst occurrence

of an element in a data sequence, we �rst discuss how to e�ciently �nd a single item. A

straightforward approach would be to scan consecutive transactions of the data-sequence



132

Transaction-Time Items
10 1, 2
25 4, 6
45 3
50 1, 2
65 3
90 2, 4
95 6

Figure 45: Example Data-Sequence

Item Times
1 ! 10 ! 50 ! NULL
2 ! 10 ! 50 ! 90 ! NULL
3 ! 45 ! 65 ! NULL
4 ! 25 ! 90 ! NULL
5 ! NULL
6 ! 25 ! 95 ! NULL

Figure 46: Alternate Representation

until we �nd the item. A faster alternative is to transform the representation of d as

follows.

Create an array that has as many elements as the number of items in the database.

For each item in the data-sequence d, store in this array a list of transaction-times of

the transactions of d that contain the item. To �nd the �rst occurrence of an item

after time t, the procedure simply traverses the list corresponding to the item till it

�nds a transaction-time greater than t. Figure 46 shows the tranformed representation

of the data-sequence in Figure 45. This transformation has a one-time overhead of

O(total-number-of-items-in-dataset) over the whole execution (to allocate and initialize

the array), plus an overhead of O(no-of-items-in-d) for each data-sequence.

Now, to �nd the �rst occurrence of an element after time t, the algorithm makes one

pass through the items in the element and �nds the �rst transaction-time greater than

t for each item. If the di�erence between the start-time and end-time is less than or

equal to the window-size, we are done. Otherwise, t is set to the end-time minus the

window-size, and the procedure is repeated.1

1An alternate approach would be to \pull up" previous items as soon as we �nd that the transaction-
time for an item is too high. Such a procedure would be similar to the algorithm that does the contains
test for a sequence.
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Example Consider the data-sequence shown in Figure 45. Assume window-size is set

to 7 days, and we have to �nd the �rst occurrence of the element (2, 6) after time t = 20.

We �nd 2 at time 50, and 6 at time 25. Since end-time((2,6)) � start-time((2,6)) > 7,

we set t to 43 (= end-time((2,6)) � window-size) and try again. Item 2 remains at time

50, while item 6 is found at time 95. The time gap is still greater than the window-size,

so we set t to 88, and repeat the procedure. We now �nd item 2 at time 90, while item 6

remains at time 95. Since the time gap between 90 and 95 is less than the window size,

we are done.

5.3.3 Taxonomies

The ideas presented in Chapter 3 for discovering association rules with taxonomies carry

over to the current problem. The basic approach was to replace each data-sequence d with

an \extended-sequence" d0, where each transaction d0i of d
0 contains the items in the cor-

responding transaction di of d, as well as all the ancestors of each item in di. For example,

with the taxonomy shown in Figure 41, a data-sequence h (Foundation, Ringworld) (Sec-

ond Foundation) i would be replaced with the extended-sequence h (Foundation, Ring-

world, Asimov, Niven, Science Fiction) (Second Foundation, Asimov, Science Fiction) i.

We now run GSP on these \extended-sequences". The optimizations for the Cumulate

and EstMerge algorithm (Sections 3.3.2 and 3.3.3) also apply. For example, the third

optimization of the Cumulate algorithm translates to not counting sequential patterns

with an element that contains both an item x and its ancestor y.

Similarly, the interest measure introduced in Section 3.2.1 can be adapted to prune re-

dundant sequential patterns. The essential idea was that, given a user-speci�ed interest-

level I, we display patterns that have no ancestors or whose actual support is at least I

times their expected support (based on the support of their ancestors).
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5.4 Performance Evaluation

We now compare the performance of GSP to the AprioriAll algorithm given in [AS95]

using both synthetic and real-life datasets. We also show the scale-up properties of GSP,

and study the e�ect of time constraints and sliding-window transactions on the perfor-

mance of GSP. Our experiments were performed on an IBM RS/6000 250 workstation

with 128 MB of main memory running AIX 3.2.5. The data resided in the AIX �le system

and was stored on a local 2GB SCSI 3.5" drive with measured sequential throughput of

about 2 MB/second.

5.4.1 Overview of the AprioriAll Algorithm

In order to explain performance trends, we must �rst give the essential details of the

AprioriAll algorithm [AS95]. This algorithm splits the problem of �nding sequential

patterns into three phases:

1. Itemset Phase. All itemsets with minimum support are found. These also cor-

respond to the sequential patterns with exactly 1 element. The Apriori algorithm

for �nding frequent itemsets given in Section 2.2.1 is used in this phase.

2. Transformation Phase. The frequent itemsets are mapped to integers. The

database is then transformed, with each transaction being replaced by the set of

all frequent itemsets contained in the transaction. This transformation can either

be done on-the-
y, each time the algorithm makes a pass over the data in the

sequence phase, or done once and cached. The latter option would be infeasible in

many real applications, as the transformed data may be larger than the original

database, especially at low levels of support.
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Each data-sequence is now a list of sets of integers, where each integer represents a

frequent itemset. Sequential patterns can now be considered lists of integers rather

than lists of sets of items. (Any element of a sequential pattern with minimum

support must be a frequent itemset.)

3. Sequence Phase. All frequent sequential patterns are found. The basic compu-

tational structure of this phase is similar to the one described for GSP. Starting

with a seed of sequences found in the previous pass (found in the itemset phase

for the �rst pass), the algorithm generates candidates, makes a pass over the data

to �nd the support count of candidates, and uses those candidates with minimum

support as the seed set for generating the next set of candidates. However, the

candidates generated and counted during the kth pass correspond to all candi-

dates with k elements rather than candidates with k items. Candidate generation

is somewhat similar to the one for GSP since it is based on the intuition that

all subsets/subsequences of an itemset/sequence with minimum support also have

minimumsupport. However, it is much simpler as its candidates are lists of integers

rather than a list of sets of integers.

5.4.2 Synthetic Data Generation

To evaluate the performance of the algorithms over a large range of data characteristics,

we generated synthetic customer transactions. Our model is a generalization of the

synthetic data generation model given in Section 2.4.3, and uses the parameters shown

in Table 7. We now highlight the extensions to the earlier model.

We determine the number of transactions for the next customer, and the average

size of each transaction for this customer as follows. The number of transactions is

picked from a Poisson distribution with mean � equal to jCj, and the average size of the
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jDj Number of customers (= size of Database)
jCj Average number of transactions per Customer
jT j Average number of items per Transaction
jSj Average length of maximal potentially large Sequences
jI j Average size of Itemsets in maximal potentially large sequences
NS Number of maximal potentially large Sequences
NI Number of maximal potentially large Itemsets
N Number of items

Table 7: Parameters for Synthetic Data Generation

transaction is picked form a Poisson distribution with � equal to jT j.

We then assign items to the transactions of the customer. Each customer is assigned

a series of potentially large sequences. If the large sequence on hand does not �t in the

customer-sequence, the itemset is put in the customer-sequence anyway in half the cases,

and the itemset is moved to the next customer-sequence the rest of the cases.

Large sequences are chosen from a table I of such sequences. The number of sequences

in I is set to NS. There is an inverse relationship betweenNS and the average support for

potentially large sequences. A sequence in I is generated by �rst picking the number of

itemsets in the sequence from a Poisson distribution with mean � equal to jSj. Itemsets

in the �rst sequence are chosen randomly from a table of large itemsets. The table of

large itemsets is similar to the table of large sequences. Since the sequences often have

common items, some fraction of itemsets in subsequent sequences are chosen from the

previous sequence generated. We use an exponentially distributed random variable with

mean equal to the correlation level to decide this fraction for each itemset. The remaining

itemsets are picked at random. In the datasets used in the experiments, the correlation

level was set to 0.25.

Each sequence in I has a weight associated with it that corresponds to the probability

that this sequence will be picked. This weight is picked from an exponential distribution

with unit mean, and is then normalized so that the sum of the weights for all the itemsets
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Name jCj jT j jSj jI j

C10-T2.5-S4-I1.25 10 2.5 4 1.25

C10-T5-S4-I1.25 10 5 4 1.25
C10-T5-S4-I2.5 10 5 4 2.5

C20-T2.5-S4-I1.25 20 2.5 4 1.25
C20-T2.5-S4-I2.5 20 2.5 4 2.5
C20-T2.5-S8-I1.25 20 2.5 8 1.25

Table 8: Parameter values for synthetic datasets

in I is 1. As before, we assign each sequence in I a corruption level c to model the fact

that all the items in a frequent sequence are not always bought together,

We generated datasets by setting NS = 5000, NI = 25000 and N = 10000. The

number of data-sequences, jDj was set to 100,000. Table 8 summarizes the dataset

parameter settings.

5.4.3 Real-life Datasets

We used the following real-life datasets:

Mail Order: Clothes A transaction consists of items ordered by a customer in a

single mail order. This dataset has 16,000 items. The average size of a transaction is

2.62 items. There are 214,000 customers and 2.9 million transactions; the average is 13

transactions per customer. The time period is about 10 years.

Mail Order: Packages A transaction consists of \packaged o�ers" ordered by a

customer in a single mail order. This dataset has 69,000 items. The average size of a

transaction is 1.65 items. There are 570,000 customers and 1.7 million transactions; the

average is 1.6 transactions per customer. The time period is about 3 years.
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Mail Order: General A transaction consists of items ordered by a customer in a

single mail order. There are 71,000 items. The average size of a transaction is 1.74

items. There are 3.6 million customers and 6.3 million transactions; the average is 1.6

transactions per customer. The time period is about 3 months.

5.4.4 Comparison of GSP and AprioriAll

On the synthetic datasets, we varied minimumsupport from 1% to 0.25%. The results are

shown in Figure 47. \AprioriAll" refers to the version that does the data transformation

on-the-
y. Also, although it may be practically infeasible to transform the database once

and cache it to disk, we have included this version in the comparison for completeness,

referring to it as \AprioriAll-Cached". We did not include in these experiments those

features not supported by AprioriAll (e.g. time constraints and sliding windows).

As the support decreases, more sequential patterns are found and the time increases.

GSP is between 30% to 5 times faster than AprioriAll on the synthetic datasets, with the

performance gap often increasing at low levels of minimum support. GSP is also slightly

faster to 3 times faster than AprioriAll-Cached.

The execution times on the real datasets are shown in Figure 48. Except for the Mail

Order: General dataset at 0.01% support, GSP runs 2 to 3 times faster than AprioriAll,

with AprioriAll-Cached coming in between. These match the results on synthetic data.

For the Mail Order: General dataset at 0.01% support, GSP is around 20 times faster

than AprioriAll and around 9 times faster than AprioriAll-Cached. We explain this

behavior below.

There are two main reasons why GSP does better than AprioriAll.

1. GSP counts fewer candidates than AprioriAll. AprioriAll prunes candidate se-

quences by checking if the subsequences obtained by dropping an element have
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Figure 47: Performance Comparison: Synthetic Data
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minimum support, while GSP checks if the subsequences obtained by dropping

an item have minimum support. Thus GSP always counts fewer candidates than

AprioriAll. The di�erence in the number of candidates can be quite large for can-

didate sequences with 2 elements. AprioriAll has to do a cross-product of the

frequent itemsets found in the itemset phase. GSP �rst counts sequences obtained

by doing a cross-product on the frequent items, and generates 2-element candidates

with more than 2 items later. If the number of large items is much smaller than

the number of large itemsets, the performance gap can be dramatic. This is what

happens in the Mail Order: General dataset at 0.01% support.

2. AprioriAll (the non-cached version) has to �rst �nd which frequent itemsets are

present in each element of a data-sequence during the data transformation, and

then �nd which candidate sequences are present in it. This is typically some-

what slower than directly �nding the candidate sequences. For the cached version,

the procedure used by AprioriAll to �nd which candidates are present in a data-

sequence is either about as fast or slightly faster than the procedure use by GSP.

However, AprioriAll still has to do the conversion once.

5.4.5 Scale-up

Fig. 49 shows how GSP scales up as the number of data-sequences is increased ten times

from 100,000 to 1 million. We show the results for the dataset C10-T2.5-S4-I1.25 with

three levels of minimum support. The execution times are normalized with respect to

the times for the 100,000 data-sequences dataset. As shown, the execution times scale

quite linearly. We observed similar behavior for the other datasets as well.

Next, we investigated the scale-up as we increased the total number of items in

a data-sequence. This increase was realized in two di�erent ways: i) by increasing
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the average number of transactions per data-sequence, keeping the average number of

items per transaction the same; and ii) by increasing the average number of items per

transaction, keeping the average number transactions per data-sequence the same. The

aim of this experiment was to see how our data structures scale with the data-sequence

size, independent of other factors like the database size and the number of frequent

sequences. We kept the size of the database roughly constant by keeping the product

of the average data-sequence size and the number of data-sequences constant. We �xed

the minimum support in terms of the number of transactions in this experiment. Fixing

the minimum support as a percentage would have led to large increases in the number of

frequent sequences and we wanted to keep the size of the answer set roughly the same.

The results are shown in Fig. 50. All the experiments had the frequent sequence

length set to 4 and the frequent itemset size set to 1.25. The average transaction size

was set to 2.5 in the �rst graph, while the number of transactions per data-sequence was

set to 10 in the second. The numbers in the key (e.g. 800) refer to the minimum support.

As shown, the execution times usually increased with the data-sequence size, but only

gradually. There are two reasons for the increase. First, �nding the candidates present

in a data-sequence took a little more time. Second, despite setting the minimum support
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in terms of the number of data-sequences, the number of frequent sequences increased

with increasing data-sequence size.

5.4.6 E�ects of Time Constraints and Sliding Windows

To see the e�ect of the sliding window and time constraints on performance, we ran

GSP on the three real datasets, using the min-gap, max-gap, sliding-window, and max-

gap+sliding-window constraints.2 The sliding-window was set to 1 day, so that the e�ect

on the number of sequential patterns would be small. Similarly, the max-gap was set to

more than the total time-span of the transactions in the dataset, and the min-gap was

set to 1 day. Figure 51 shows the results.

The min-gap constraint comes for \free"; there was no performance degradation. The

reason is that the min-gap constraint does not a�ect candidate generation, e�ectiveness

of the hash-tree in reducing the number of candidates that need to be checked, or the

speed of the contains test. However, there was a performance penalty of 5% to 30% for

running the max-gap constraint or sliding windows. There are several reasons for this:

1. The time for the contains test increases when either the max-gap or sliding window

2We could not study the performance impact of running with and without the taxonomy. For a
�xed minimum support, the number of sequential patterns found will be much higher when there is a
taxonomy. If we try to �x the number of sequential patterns found, other factors such as the number of
passes di�er for the two runs.
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option is used.

2. The number of candidates increases when the max-gap constraint is speci�ed, since

we can no longer prune non-contiguous subsequences.

3. When a sliding-window option is used, the e�ect of the hash-tree in pruning the

number of candidates that we have to check against the data-sequence decreases

somewhat. If we reach a node by hashing on item x, rather than just applying

the hash function to the items after x and checking those nodes, we also have to

apply the hash function to the items before x whose transaction-times are within

window-size of the transaction-time for x.

For realistic values of max-gap, GSP will usually run signi�cantly faster with the

constraint than without, since there will be fewer candidate sequences. However, speci-

fying a sliding window will increase the execution time, since both the overhead and the

number of sequential patterns will increase.

5.5 Summary

We are given a database of sequences, where each sequence is a list of transactions

ordered by transaction-time, and each transaction is a set of items. The problem of

mining sequential patterns introduced in [AS95] is to discover all sequential patterns

with a user-speci�ed minimum support, where the support of a pattern is the number of

data-sequences that contain the pattern.

In this chapter, we addressed some critical limitations of the earlier work in order to

make sequential patterns useful for real applications. In particular, we generalized the

de�nition of sequential patterns to admit max-gap and min-gap time constraints between

adjacent elements of a sequential pattern. We also relaxed the restriction that all the
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items in an element of a sequential pattern must come from the same transaction, and

allowed for a user-speci�ed window-size within which the items can be present. Finally,

if a user-de�ned taxonomy over the items in the database is available, the sequential

patterns may include items across di�erent levels of the taxonomy.

We presented GSP, a new algorithm that discovers these generalized sequential pat-

terns. It is a complete algorithm in that it guarantees �nding all patterns that have a

user-speci�ed minimum support. Empirical evaluation using synthetic and real-life data

indicates that GSP is much faster than the AprioriAll algorithm presented in [AS95].

GSP scales linearly with the number of data-sequences, and has very good scale-up

properties with respect to the average data-sequence size.
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Chapter 6

Conclusions

In this chapter, we summarize the dissertation, discuss future work, and then conclude

with some closing remarks.

6.1 Summary

We �rst considered the problem of discovering association rules between items in a large

database of sales transactions. We presented two new algorithms for solving this problem

that are fundamentally di�erent from previously known algorithms. Experiments with

synthetic as well as real-life data showed that these algorithms outperform the prior

algorithms by factors ranging from three for small problems to more than an order of

magnitude for large problems. We also showed how the best features of the two proposed

algorithms can be combined into a hybrid algorithm, called AprioriHybrid. Scale-up

experiments show that AprioriHybrid scales linearly with the number of transactions.

AprioriHybrid also has excellent scale-up properties with respect to the transaction size

and the number of items in the database.

Next, we generalized the problem by incorporating taxonomies. Given a large database

of transactions, where each transaction consists of a set of items, and a taxonomy on

the items, we �nd associations between items at any level of the taxonomy. An obvious

solution to the problem is to add all ancestors of each item in a transaction to the transac-

tion, and then run any of the algorithms for mining association rules on these \extended

transactions". However, this \Basic" algorithm is not very fast; we presented two other
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algorithms, Cumulate and EstMerge, which run 2 to 5 times faster than Basic (and more

than 100 times faster on one real-life dataset). Between the two algorithms, EstMerge

performs somewhat better than Cumulate, with the performance gap increasing as the

size of the database increases.

We also presented a new interest-measure for rules which uses the information present

in the taxonomy. The intuition behind this measure was that if the support and con-

�dence of a rule are close to their expected values based on an ancestor of the rule,

the more speci�c rule can be considered redundant. Given a user-speci�ed \minimum-

interest-level", this measure can prune a large number of redundant rules. We observed

that it could prune 40% to 60% of all the generalized association rules on two real-life

datasets.

Next, we introduced the problem of mining association rules in large relational ta-

bles that contain both quantitative and categorical attributes. An example of such an

association rule might be \10% of married people between age 50 and 60 have at least

2 cars". We dealt with quantitative attributes by �ne-partitioning the values of the at-

tribute and then combining adjacent partitions as necessary. We introduced measures of

partial completeness to quantify the information lost due to partitioning. A direct appli-

cation of this technique can generate too many similar rules. We tackled this problem by

extending the \greater-than-expected-value" interest measure to identify the interesting

rules in the output. We gave an algorithm for mining such quantitative association rules,

and described the results of using this approach on a real-life dataset.

Finally, we introduced the problem of mining sequential patterns, which is closely

related to the problem of mining association rules. Given a database of sequences, where

each sequence is a list of transactions ordered by transaction-time, and each transaction

is a set of items, the problem is to discover all sequential patterns with a user-speci�ed
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minimum support. The support of a pattern is the number of data-sequences that

contain the pattern. An example of a sequential pattern is \5% of customers bought

`Foundation' and `Ringworld' in one transaction, followed by `Second Foundation' in a

later transaction". We generalized the de�nition of sequential patterns to admit max-

gap and min-gap time constraints between adjacent elements of a sequential pattern.

We also relaxed the restriction that all items in an element of a sequential pattern must

come from the same transaction by allowing a user-speci�ed window-size within which

the items can be present. Finally, if a user-de�ned taxonomy over the items in the

database is available, the sequential patterns may include items across di�erent levels

of the taxonomy. We presented GSP, a new algorithm that discovers these generalized

sequential patterns. GSP scales linearly with the number of data-sequences, and has

very good scale-up properties with respect to the average data-sequence size.

6.2 Future Work

We now discuss topics for future work.

Quantitative Association: Other Measures of Partial Completeness We pre-

sented a measure of partial completeness based on the support of the rules. Alternate

measures may be useful for some applications. For instance, we may generate a partial

completeness measure based on the range of the attributes in the rules. (For any rule,

we will have a generalization such that the range of each attribute is at most K times

the range of the corresponding attribute in the original rule.)

Quantitative Association: Other Partitioning Methods Equi-depth partitioning

may not be the best approach for highly skewed data. This is because it tends to split

adjacent values with high support into separate intervals even though their behavior
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would typically be similar. It may be worth exploring the use of clustering algorithms

[JD88] for partitioning and their relationship to partial completeness.

Quantitative Sequential Patterns The concepts of partial completeness and the

interest measure that we developed for quantitative associations can be directly applied

to sequential patterns. However, the algorithm for �nding quantitative associations does

not map directly. Developing an e�cient algorithm for mining quantitative sequential

patterns is an open problem.

Quantitative Associations and Clustering Each quantitative association rule, af-

ter pruning by the interest measure, corresponds to a cluster in a lower-dimensional space.

It would be interesting to explore the relationship between quantitative associations and

clustering algorithms.

Rule Interest Finding the interesting patterns in the output of association rules or

sequential patterns is an area where more work needs to be done. While the greater-than-

expected value interest measure helps, incorporating additional domain knowledge will

reduce the number of uninteresting rules even further. One of the challenges is identifying

types of domain knowledge (apart from taxonomies) that are applicable across several

domains and do not require a lot of e�ort by the user to create them.

Visualization Visualizing the output of running associations or sequential patterns is

an interesting research problem, since standard techniques do not scale beyond a few

hundred items and very simple association rules. A related problem is coming up with

high-quality, easy-to-generate domain-speci�c or application-speci�c visualizations.
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6.3 Closing Remarks

This dissertation presented fast algorithms and data structures for discovering associa-

tion rules. The problem of mining association rules was then generalized by incorporating

taxonomies and quantitative attributes, and the algorithms extended to discover these

generalized rules. Finally, the dissertation presented a fast algorithm for mining associ-

ations over time, called sequential patterns. The algorithms for mining associations and

sequential patterns have been successfully applied in many domains, including retail,

direct marketing, fraud detection and medical research.
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