
Range Queries in OLAP Data Cubes

Ching-Tien Ho Rakesh Agrawal Nimrod Megiddo Ramakrishnan Srikant

IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120

fho,ragrawal,megiddo,srikantg@almaden.ibm.com

Abstract

A range query applies an aggregation operation over all se-
lected cells of an OLAP data cube where the selection is
speci�ed by providing ranges of values for numeric dimen-
sions. We present fast algorithms for range queries for two
types of aggregation operations: SUM and MAX. These two
operations cover techniques required for most popular aggre-
gation operations, such as those supported by SQL.

For range-sum queries, the essential idea is to precom-
pute some auxiliary information (pre�x sums) that is used to
answer ad hoc queries at run-time. By maintaining auxiliary
information which is of the same size as the data cube, all
range queries for a given cube can be answered in constant
time, irrespective of the size of the sub-cube circumscribed
by a query. Alternatively, one can keep auxiliary informa-
tion which is 1/bd of the size of the d-dimensional data cube.
Response to a range query may now require access to some
cells of the data cube in addition to the access to the auxil-
iary information, but the overall time complexity is typically
reduced signi�cantly. We also discuss how the precomputed
information is incrementally updated by batching updates
to the data cube. Finally, we present algorithms for choos-
ing the subset of the data cube dimensions for which the
auxiliary information is computed and the blocking factor
to use for each such subset.

Our approach to answering range-max queries is based on
precomputed max over balanced hierarchical tree structures.
We use a branch-and-bound-like procedure to speed up the
�nding of max in a region. We also show that with a branch-
and-bound procedure, the average-case complexity is much
smaller than the worst-case complexity.

1 Introduction

On-Line Analytical Processing (OLAP) [Cod93] allows com-
panies to analyze aggregate databases built from their data
warehouses. An increasingly popular data model for OLAP
applications is the multidimensional database (MDDB)
[OLA96] [AGS97], also known as data cube [GBLP96]. To
build an MDDB from a data warehouse, certain attributes

(typically 5 to 10) are selected. Thus, each data record con-
tains a value for each of these attributes. Some of these
attributes are chosen as metrics of interest and are referred
to as the measure attributes. The remaining attributes, say
d of them, are referred to as dimensions or the functional
attributes. The measure attributes of those records with
the same functional attributes values are combined (e.g.
summed up) into an aggregate value. Thus, an MDDB can
be viewed as a d-dimensional array, indexed by the values
of the d functional attributes, whose cells contain the values
of the measure attributes for the corresponding combina-
tion of functional attributes. Consider a data cube from
insurance company as an example. Assume the data cube
has four functional attributes (dimensions): age, year, state,
and (insurance) type. Further assume that the domain of
age is 1 to 100, of year is 1987 to 1996, of state is the 50
states in U.S., and of type is fhome, auto, healthg. The
data cube will have 100 � 10 � 50 � 3 cells, with each cell
containing the total revenue (the measure attribute) for the
corresponding combination of age, year, state, and type.

Recently, [GBLP96] proposed that the domain of each
functional attribute be augmented with an additional value
for each aggregation operation, denoted by \all", to store
aggregated values of the measure attributes in all of the cells
along that functional attribute. In the above example, the
data cube will be extended to 101 � 11� 51 � 4 if only one
aggregation operation, say SUM, is considered. Thus, any
sum-query of (age, year, state, type), where each attribute is
either a singleton value in its domain or all, can be answered
by accessing a single cell in the extended data cube. For
instance, the total amount of revenue for the auto insurance
in the whole US in 1995 is a query speci�ed by (all, 1995,
all, auto), which can be answered in one cell access. We call
such queries singleton queries.

We consider a class of queries over data cubes, which we
shall call range queries, that apply a given aggregation op-
eration over selected cells where the selection is speci�ed as
contiguous ranges in the domains of some of the attributes.
In particular, we consider two di�erent types of aggrega-
tion operations: one typi�ed by SUM and another by MAX.
The corresponding range queries are termed range-sum and
range-max queries, respectively.

Such range queries are frequent with respect to numeric
attributes with natural semantics in ordering, such as age,
time, salary, etc. Consider a range-sum query to the same
insurance data cube: �nd the revenue from customers with
an age from 37 to 52, in a year from 1988 to 1996, in all
of U.S., and with auto insurance. To answer this query, we
can use precomputed values for \all" in the state domain.
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However, since the query speci�es 16 (but not all) di�erent
values in the age domain, and 9 (but not all) di�erent values
in the year domain, one needs to access 16�9�1�1 cells in
the extended data cube and sum them up before returning
the answer. In an interactive exploration of data cube, which
is the predominant OLAP application area, it is imperative
to have a system with fast response time.

Contribution We present di�erent techniques to speedup
range-sum queries and range-max queries, respectively. The
main idea for speeding up range-sum queries is to precom-
pute multidimensional pre�x-sums of the data cube. By
precomputing as many pre�x-sums as the number of ele-
ments in the original data cube, any range-sum query can be
answered by accessing and combining 2d appropriate pre�x-
sums, where d is the number of numeric dimensions for which
ranges have been speci�ed in the query. This compares to
a naive algorithm of a time complexity equal to the vol-
ume of the query sub-cube, which is at least 2d if the range
of every dimension in the query is of size at least two. If
storage is a premium, then the original data cube can be
discarded, and singleton queries can be answered by using
precomputed pre�x-sums, as any cell of the data cube can
be computed with the same time-complexity as a range-sum
query. We also propose an alternative technique that trades
time for space and stores pre�x-sums only at a block level.
Any range sum query can now be answered by accessing and
combining 2d pre�x-sums as well as some cells of the data
cube.

Our approach to answering range-max queries is based on
precomputed max over balanced hierarchical tree structures.
We use a branch-and-bound[Mit70]-like procedure to speed
up the �nding of max in a region, based on the following
property of max: given two sets of numbers S1 and S2 and
the precomputed max(S1), if there exists a number i 2 S2
such that i � max(S1) then max(S2) = max(S2 � S1) (even
if S2 6� S1). We also show that with a branch-and-bound
procedure, the average-case complexity is much smaller than
the worst-case complexity.

We present algorithms for incrementally updating the
precomputed information by batching updates to the data
cube. We also discuss issues important for a practical re-
alization of the proposed techniques. We discuss how to
choose the subset of the data cube dimensions for which the
auxiliary information is computed and the blocking factor
to use for each such subset.

Techniques described for range-sum queries can be ap-
plied to any binary operator � for which there exists an
inverse binary operator 	 such that a � b 	 b = a, for any
a and b in the domain. Examples of such (�;	) operators
include (+, �), (bitwise-exclusive-or, bitwise-exclusive-or),
(exclusive-or, exclusive-or), and (multiplication, division, for
a domain excluding zero). We describe the algorithms for
range-sums based on the (+, �) operators, as SUM is the
most prevalent aggregation operation in OLAP applications.
Note that the aggregation operator COUNTand AVERAGE
for a range can also be derived using the same algorithm:
COUNT is a special case of SUM and AVERAGE can be ob-
tained by keeping the 2-tuple (sum, count). Note also that
ROLLING SUM and ROLLING AVERAGE, two other fre-
quently used operations in OLAP, are special cases of range-
sum and range-average, respectively. Techniques for MAX
straightforwardly apply to MIN operation. Thus, we have
covered most popular aggregation operations supported by
SQL [IBM95].

Related Work Following the introduction of the data cube
model in [GBLP96], there has been considerable research in
the database community on developing algorithms for com-
puting the data cube [AAD+96], for deciding what subset
of a data cube to pre-compute [HRU96] [GHRU97], for es-
timating the size of multidimensional aggregates [SDNR96],
and for indexing pre-computed summaries [SR96] [JS96].
Related work also includes work done in the context of sta-
tistical databases [CM89] on indexing pre-computed aggre-
gates [STL89] and incrementally maintaining them [Mic92].
Also relevant is the work on maintenance of materialized
views [Lom95] and processing of aggregation queries [CS94]
[GHQ95] [YL95].

In the �eld of computational geometry, there is extensive
literature on e�cient algorithms for handling various types
of range queries (see, e.g., [BF79] [Ben80] [CR89] [Cha90]
[Meh84] [Vai85] [WL85] [Yao85]). The range queries are
typically de�ned as follows: given m weighted points in an
unbounded d-dimensional integer domain, and a query q rep-
resented by a d-dimensional rectangle, apply some aggrega-
tion operator to all weighted points contained in q. Most of
the results share the following properties: First, the space
overhead is mostly non-linear in m (e.g. O(m logd�1m)).
Second, the index domain of each dimension is assumed to
be unbounded. Third, mostly the worst-case space and time
trade-o�s are considered. Fourth, most of them do not ex-
ploit any properties of the aggregation operation (e.g., the
existence of an inverse function with respect to the aggrega-
tion operator).

As a contrast, we consider a space overhead which is lin-
ear in m. We assume the index domain of each dimension
is bounded and we aim at minimizing the average-case time
complexity. Finally, our techniques for range-sum queries
take advantage of the existence of the inverse operation for
SUM. There are also pragmatic di�erences for typical \data
cubes" arising out of the computational geometry domain
versus the OLAP domain. A canonical sparsity of the OLAP
data cube is about 20% [Col96] and dense sub-clusters typ-
ically exist, while the computational geometry data cubes
can be much sparser even after placing upper bounds on
each index domain.

In an accompanying paper [HBA97], we discuss e�cient
techniques for partial-sum queries where queries are on arbi-
trary subsets (not necessarily contiguous) of the categorical
attributes. We map the partial-sum problem to the cover-
ing problem in the theory of error-correcting codes [CLS86],
apply some known covering codes to the problem, and de-
vise a new covering code tailored for this application that
o�ers the best space and time trade-o�. Although a range-
sum query can be viewed as a special case of the partial-sum
query, the techniques specialized for range-sum queries pro-
posed in this paper take advantage of the contiguous ranges
of selection and have a better performance.

Paper Organization The remainder of the paper is orga-
nized as follows. In Section 2, we give a model for both
the range-sum and range-max problems. In Section 3, we
present the basic algorithm for range-sum queries based on
precomputed pre�x sums of the data cube. In Section 4,
we generalize the basic algorithm to the blocked algorithms.
Section 5 presents an incremental algorithm to handle the
data cube updates. We present a range-max algorithm based
on tree structures with branch-and-bound-like procedure in
Section 6, then give an incremental algorithm for updating
the precomputed tree structures in Section 7. A natural
range-sum algorithm is to use the same tree structure used
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for range-max queries, but without the branch-and-bound
optimization. In Section 8, we show that a tree-based range-
sum algorithm is inferior to our pre�x-sum-based approach.
We then give an algorithm for choosing the subset of the
data cube dimensions for which the pre�x sum is computed
and the blocking factor to use for each such subset in Sec-
tion 9. Section 10 deals with sparse data cubes. Section 11
concludes the results. Proofs of the theorems are given in
Appendix.

2 The Model

Let D = f1; 2; � � � ; dg denote the set of dimensions, where
each dimension corresponds to a functional attribute. We
will represent the d-dimensional data cube by a d-dimensional
array A of size n1 � n2� � � � �nd, where nj � 2, j 2 D. We
assume an array has a starting index 0. For convenience, we

will call each array element a cell. Also, let N =
Qd

j=1 nj
be the total size of array A.

We will describe all range queries with respect to array
A. In practice, each dimension of A is the rank domain of
a corresponding attribute of the data cube. Thus, the at-
tributes of the data cube need not be restricted to the con-
tinuous integer domain. However, for performance reasons,
it is desirable that there exists a simple function mapping
the attribute domain to the rank domain. If such function
does not exist, then additional storage and time overhead
for lookup tables or hash tables may be required for the
mapping.

The problem of computing a range-sum query in a d-
dimensional data cube can be formulated as follows:

Sum(`1 : h1; � � � ; `d : hd) =

h1X
i1=`1

� � �

hdX
id=`d

A[i1; � � � ; id]:

The range-max query problem can be formulated as get-
ting the Max index of a region of A de�ned as follows:

Max index(`1 : h1; : : : ; `d : hd) = (x1; : : : ; xd)

where (8i 2 D)(`i � xi � hi) and

A[x1; : : : ; xd]

=maxfA[y1; : : : ; yd] j (8i 2 D)(`i � yi � hi) g:

We will use Region(`1 : h1; `2 : h2; � � � ; `d : hd) to de-
note a d-dimensional space (region) bounded by `j � ij � hj
in dimension j for all j 2 D. We refer to the volume of a re-
gion as the number of integer points de�ned within it. That
is, the volume of Region(`1 : h1; `2 : h2; � � � ; `d : hd) isQd

j=1
(hj � `j + 1).

We will refer to the volume of a range query as the volume
of the region de�ning the range query. The range parameters
`j and hj for all j 2 D is speci�ed by the user and typically
not known in advance, while the array A is given in advance.

When d = 1, we will sometimes drop the subscript 1 of
n, ` and h. For a range-max query, there may be more than
one index with the same maximum value in the speci�ed re-
gion. In such case, we assume that the algorithm arbitrarily
returns one of the indices with the maximum value in the
region.

We will �rst assume a dense data cube and defer the
discussion of sparse data cubes to Section 10.

Array A
Index 0 1 2 3 4 5

0 3 5 1 2 2 3
1 7 3 2 6 8 2
2 2 4 2 3 3 5

Array P
Index 0 1 2 3 4 5

0 3 8 9 11 13 16
1 10 18 21 29 39 44
2 12 24 29 40 53 63

Figure 1: Example of the original array A (top) and its
pre�x-sum array P (bottom).

3 The Basic Range-Sum Algorithm

We �rst propose a simple method, which needs N =
Qd

i=1 ni
additional cells to store certain precomputed pre�x-sums
such that any d-dimensional range-sum can be computed
in 2d � 1 computation steps, based on up to 2d appropriate
precomputed pre�x sums.

3.1 Precomputed Pre�x-Sum Array

Let P be a d-dimensional array of size N = n1�n2�� � ��nd
(which has the same size as A). P will be used to store
various precomputed pre�x-sums of A. We will precompute,
for all 0 � xj < nj and j 2 D,

P [x1; x2; � � � ; xd] = Sum(0 : x1; 0 : x2; � � � ; 0 : xd)

=

x1X
i1=0

x2X
i2=0

� � �

xdX
id=0

A[i1; i2; � � � ; id]:(1)

For example, when d = 2, we precompute, for all 0 � x < n1
and 0 � y < n2,

P [x; y] = Sum(0 : x; 0 : y) =

xX
i=0

yX
j=0

A[i; j]:

Figure 1 shows an example of A[x;y] and its corresponding
P [x;y] for d = 2, n1 = 6 and n2 = 3.

3.2 The Basic Range-Sum Algorithm

The theorem below provides how any range-sum of A can
be computed from up to 2d appropriate elements of P . The
left hand side of Equation 2 speci�es a range-sum of A. The
right hand side of Equation 2 consists of 2d additive terms,
each is from an element of P with a sign \+" or \�" de-
�ned by product of all s(i)'s. For notational convenience,
let P [x1; x2; � � � ; xd] = 0 if xj = �1 for some j 2 D.

Theorem 1 For all j 2 D, let

s(j) =
n
1; if xj = hj,
�1; if xj = `j � 1.

Then, for all j 2 D,

Sum(`1 : h1; `2 : h2; � � � ; `d : hd)

=
X

8xj2f`j�1;hjg

( 
dY
i=1

s(i)

!
� P [x1; x2; � � � ; xd]

)
:(2)
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+

Area_E Area_A Area_B Area_C Area_D

= - -

Figure 2: A geometrical explanation for the two-dimensional case: Sum(Area E) = Sum(Area A) � Sum(Area B) �
Sum(Area C) + Sum(Area D).

Example When d = 2, the range-sum Sum(`1 : h1; `2 :
h2) can be obtained in three computation steps as

P [h1; h2]� P [h1; `2 � 1]� P [`1 � 1; h2] + P [`1 � 1; `2 � 1]:

For instance in Figure 1, the range-sum Sum(2 : 3; 1 : 2)
can be derived from

P [3; 2]� P [3; 0]� P [1; 2] + P [1; 0] = 40 � 11� 24 + 8 = 13:

Figure 2 gives a geometrical explanation for the two-dimensional
case.

When d = 3, the range-sum Sum(`1 : h1; `2 : h2; `3 : h3)
can be computed in seven steps through

P [h1; h2; h3]� P [h1; h2; `3 � 1] � P [h1; `2 � 1; h3]

+P [h1; `2�1; `3�1]�P [`1�1; h2; h3]+P [`1�1; h2; `3�1]

+ P [`1 � 1; `2 � 1; h3]� P [`1 � 1; `2 � 1; `3 � 1]:

3.3 Computing the Pre�x-Sum Array

Recalling that N is the total size of array P , a naive algo-
rithm to compute P from A may take a time of O(N2). A
better algorithm with a time complexity of N(2d � 1) steps
can be derived based on Theorem 1. We now describe an
algorithm with a time complexity of dN steps.

The algorithm has d phases. During the �rst phase, we
perform one-dimensional pre�x-sum of A along dimension
1 for all elements of A and store the result in P (denoted
P1). During the i-th phase, for all 2 � i � d, we perform
one-dimensional pre�x-sum of Pi�1 (the output from pre-
vious phase) along dimension i and store the result back
to P (denoted Pi). Note that only one copy of P is needed
because the same array is reused during each phase of pre�x-
sum computation. The correctness proof of the algorithm is
straightforward because after d phases each P [y1; y2; � � � ; yd]
contains the sum of A[x1; x2; � � � ; xd]'s for all 0 � xj � yj,
j 2 D.

On an implementation note, the order of Pi elements vis-
ited should follow the natural order in storage as opposed
to following the dimension along which the pre�x-sum is
performed. With such an implementation, each page of P
will be paged in at most twice for each phase of the algo-
rithm. Consider Figure 1 as an example and assume arrays
are stored in the row-major order. During the �rst phase,
the intermediate array is computed from array A in the or-
der of pre�x-sum for �rst row, second row, etc. During the
second phase, the �nal array P on the right of Figure 1 is
computed from the intermediate array. Six pre�x sums, one
along each column, are required. In order to visit P1 follow-
ing the row-major ordering, these six pre�x-sum operations
are properly interleaved. It is also possible to minimize the
number of page-in per phase for each page to one, if array
P is properly page-aligned.

Array P
Index 0 1 2 3 4 5

0 - - - - - -
1 - 18 - 29 - 44
2 - 24 - 40 - 63

Figure 3: Example of the blocked pre�x-sum array P with
b = 2.

3.4 Storage Consideration

It is possible to discard array A once P is computed, thus
preserving the same total required storage. This is because
any element of A can be viewed as a special case of the range-
sum: A[x1; x2; � � � ; xd] = Sum(x1 : x1; x2 : x2; � � � ; xd : xd).
Thus, whenever A[x1; x2, � � � ; xd] is accessed later, we com-
pute it on the y from up to 2d elements of P , based on The-
orem 1, as opposed to accessing a single element of A. This
o�ers an interesting space-time trade-o�, especially when d
is small.

In the next section, we will present a di�erent space-time
trade-o� by keeping pre�x-sums at a coarser grain level and
also keeping A.

4 The Blocked Range-Sum Algorithm

4.1 The Blocked Pre�x-Sum Array

A simple variation to save space as a trade-o� to time is to
keep pre�x-sums at a coarser-grained (blocked) level. More
speci�cally, we store the pre�x-sum only when every index
is either one less than some multiple of b or the last index,
i.e., P [i1; i2; � � � ; id], where (ij + 1) mod b = 0 or ij = nj �
1, for all j 2 D. Thus, for every d-dimensional block of
size b � b � � � � � b, only one pre�x-sum is precomputed,
asymptotically. For example, in the two-dimensional case,
only P [b�1; b�1]; P [b�1;2b�1]; � � � ; P [b�1;n2�1]; P [2b�
1; b � 1]; P [2b� 1; 2b� 1], etc., are precomputed, Figure 3.

For clarity, we will refer to this algorithm with b > 1
as the blocked algorithm and the algorithm of the preceding
section with b = 1 as the basic algorithm. For notational
convenience, we still use the same array P and assume that
only P [i1; i2; � � � ; id]'s, where \(ij�1) mod b = 0 or ij = nj�
1 for all j 2 D, are de�ned. (In a practical implementation,
the sparse array P of size N and density � 1=bd will be
packed to a dense array of size about N=bd.) We discuss the
problem of choosing b in Section 9. Note that if the blocked
algorithm is used, the original array A cannot be dropped.
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4.2 The Blocked Algorithm

We now present the blocked algorithm for computing the
range-sum based on the blocked pre�x-sum array P and
the original array A, given the dimensionality of the data
cube d, the block size parameter b, and the range-sum query
Sum(`1 : h1; `2 : h2; � � � ; `d : hd).

First, we need to de�ne some notations. For all j 2 D,
let `00j = b b`j=bc, `

0
j = b d`j=be, h

0
j = b bhj=bc, and h00j =

min(b dhj=be ; nj), Figure 4. Clearly, `
00
j � `j � `0j and h0j �

hj � h00j . However, `j < hj does not imply `0j < h0j. In the
following, we consider two cases separately: case 1 where
`0j < h0j for all j 2 D, and case 2 where `0j � h0j for some
j 2 D,

Case 1 To compute Sum(`1 : h1; `2 : h2; � � � ; `d : hd),
we will decompose its region into 3d disjoint sub-regions as
follows. Let Rj = f`j : `

0
j � 1; `0j : h

0
j � 1; h0j : hjg be a set

of three adjoining ranges. Then, for all j 2 D,

Sum(`1 : h1; � � � ; `d : hd) =
X

8rj2Rj

Sum(r1; � � � ; rd):

Intuitively, we partition the range in each dimension into
three adjoining sub-ranges where the middle sub-range is
properly aligned with the block structure. Thus, the Carte-
sian product of these d dimensions will form 3d disjoint sub-
regions. Note that some of the 3d regions may be empty
regions.

For example, Figure 5(a) gives a pictorial example of
query Region(50 : 350; 50 : 350) (represented by the shaded
area). Figure 5(b) shows the 32 = 9 decomposed regions for
this query. The decomposed regions are denoted A1 through
A9.

For convenience, we refer to the region Region(r1; r2; � � �,
rd), for which rj = `0j : h

0
j � 1 for all j 2 D, as an internal

region. All the other 3d�1 regions are referred to as bound-
ary regions. For example, A5 in Figure 5(b) is an internal
region and all other 8 regions are boundary regions.

To compute the total range-sum for a given range-sum
query, we �rst compute the range-sum for the internal re-
gion. Since the internal region is properly aligned with the
block structure, its range-sum can be computed in up to
2d � 1 steps based on up to 2d appropriate elements of the
blocked pre�x-sum array P only. What remains to be done
is to sum up the range-sums for all 3d�1 boundary regions.
To get range-sum for a non-empty boundary region, array
A is needed and possibly array P as well.

We �rst de�ne a few terms. For each boundary region
R = Region(r1; r2, � � � ; rd), de�ne its superblock region as
Region(B1;B2; � � � ;Bd), where for all j 2 D

Bj =

(
`00j : `0j � 1; if rj = `j : `

0
j � 1,

rj ; if rj = `0j : h
0
j � 1,

h0j : h
00
j � 1; if rj = h0j : hj.

Then, for each boundary region Region(r1; r2; � � � ; rd), de-
�ne its complement region as Region(B1;B2; � � � ;Bd) �
Region(r1; r2; � � � ; rd). Intuitively, the superblock region of

(0,0) (399,0)

(0,399) (399,399)

(0,0) (399,0)

(0,399) (399,399)

A1 A2 A3

A4 A5 A6

A7 A8 A9

(a) (b)

(0,0) (399,0)

(0,399) (399,399)

B1 B2 B3

B4 B6

B7 B8 B9

(c)

(0,0) (399,0)

(0,399) (399,399)

C1 C2 C3

C4 C6

C7 C8 C9

(d)

Figure 5: Computing Sum(50 : 349; 50 : 349) where b =
100.

(0, 399)

(b)(a)

(0, 0)

(0, 399) (399, 399) (399, 399)

(0, 0) (399, 0)(399, 0)

Figure 6: Computing Sum(75 : 374; 100 : 354).

a boundary region R is the smallest region that contains
R and is aligned with the block structure. Using the ex-
ample of boundary regions in Figure 5(b), their respective
superblock regions are shown in Figure 5(c) and complement
regions shown in Figure 5(d).

For any boundary region R, there are two possible meth-
ods to compute its range-sum. First, one simply sums up
all elements of A corresponding to the boundary region R.
Second, one can sum up all elements of A corresponding to
the complement region of R, then subtract the sum from the
range-sum for the superblock region of R. The range-sum for
a superblock region can be computed in 2d�1 steps using P
only. To minimize the time complexity, our algorithm will
choose the �rst method when the volume of R is smaller
than or equal to \the volume of its complement region plus
2d�1"; and will choose the second method, otherwise. Note
that the choice will be made for each boundary region in-
dependently. Consider the query Sum(75 : 374; 100 : 354)
as shown in Figure 6(a). Di�erent combinations of the �rst
method and the second method will be chosen as denoted
by the shaded areas in Figure 6(b).
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Case 2 The algorithm description for the case 1 cannot
be directly applied to the case 2. A simple modi�cation to
the partitioning is as follows. Let Rj = f`j : `0j � 1; `0j :
h0j � 1; h0j : hjg (as before) if `

0
j < h0j, and let Rj = f`j : hjg

otherwise. Then, for all j 2 D,

Sum(`1 : h1; � � � ; `d : hd) =
X

8rj2Rj

Sum(r1; � � � ; rd):

The de�nition of superblock region is similarly modi�ed
as Region(B1;B2; � � � ;Bd), where for all j 2 D

Bj =

8><
>:
`00j : `0j � 1; if rj = `j : `

0
j � 1,

rj ; if rj = `0j : h
0
j � 1,

h0j : h
00
j � 1; if rj = h0j : hj ,

`00j : h00j � 1; if rj = `j : hj .

With these two modi�cations, the algorithm description for
the case 1 can now be applied to the case 2 as well.

4.3 Computing the Blocked Pre�x-Sum Array P

We now describe a two-phase algorithm to compute the
blocked pre�x-sum array P , given the parameter b. In the
�rst phase, for every d-dimensional block of form b�b�� � ��
b, we sum up all elements of A in the block. Thus, the array
A is contracted by a factor of b on every dimension during
this phase. In the second phase, we apply the algorithm
described in Subsection 3.3 to the contracted array of A. It
can be seen that the algorithm takes a time no more than
N + dN=bd = (1 + �)N steps (where � = d=bd converges to
0 when b or d increases) and requires no additional bu�er
space than the blocked pre�x-sum array.

5 The Batch-Update Algorithm for Range-Sum Queries

In a typical OLAP environment, updates to data cube are
cumulated over a period of time (say, one day) and are per-
formed together as a batch at the end of each period (say,
at midnight every day). Thus, it is reasonable to assume
a model where k > 1 update queries are issued successively
before the next read-only query is issued. In this section, we
will present an e�cient algorithm that batches all the up-
dates together and performs a \combined" update to array
P .

5.1 The Batch-Update Algorithm for b = 1

Consider �rst the case when the basic algorithm is used, i.e.,
b = 1. When a query updates an array element A[x1; : : : ; xd],
all P [y1; � � � ; yd]'s, where yj � xj for all j 2 D, need to be
updated accordingly. The worst-case complexity of a single
update is O(N), which is the total size of array P . This
occurs, for instance, when A[0; � � � ; 0] is changed.

For each user update of form (location of an A element,
new value), we update the corresponding A element right
away and queue an update of a form (location of an A ele-
ment, value-to-add), to be used later for a combined update
of P . Here, value-to-add is the new value of the A element
subtracting the previous value of it. The inputs to the batch-
update algorithm are array P and k queued updates of form
(location, value-to-add).

We say an element of P , P [y1; � � � ; yd], is a�ected if its
value needs to be modi�ed due to any of the k updates, i.e.,
if there exists an update of A[x1; � � � ; xd] where xj � yj for
all j 2 D. We say two elements are in the same update-class
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0 n1−1 0 n1−1
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0 n1−1

1

2

1

2

+ =
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Figure 7: Examples of a�ected elements, (a) and (b), and
the combining e�ect, (c).
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Figure 8: Examples of partitioned regions for k = 3 and
d = 2.

if they are a�ected by the same subset of k updates. Clearly,
elements in the same update-class have the same combined
values-to-add. For example, Figures 7(a) shows the a�ected
elements of P , marked by the shaded area, due to an element
of A, marked by \1", for a two-dimensional case. Figure 7(b)
shows another example. Figure 7(c) shows the combining
e�ect where the a�ected elements of P can be partitioned
into 3 di�erent update-classes, each in a di�erently shaded
region.

The goal is to group all \a�ected" elements of array P
into minimum number of disjoint regions with the two de-
sirable properties:

Property 1 All elements (of P ) in the same region are in
the same update-class.

Property 1 implies that the same combined values-to-add
can be added to all elements of P in the same region. For
the purpose of implementation, we add Property 2 below.

Property 2 Each region has a shape of a d-dimensional
(rectangular) cube.

Property 2 implies that each region is convex and, hence, can
be coded easily. Figure 8 gives some motivating examples
for k = 3 and d = 2, in which all a�ected elements have been
partitioned into 6 regions with the two properties mentioned
above.

The Update Algorithm We now give an algorithm for any
k and d by recursion on d. For d = 1, we sort the indices
of k updates in the ascending order and denote the sorted
k indices as u1; u2; � � � ; uk. Also denote the value-to-add for
the i-th update as vi. We now partition the index space of
P , 0 through n1 � 1, into k + 1 adjoining regions according
to the sorted k indices:

Region(0 : u1�1);Region(u1 : u2�1); � � � ;Region(uk : n1�1):

Refer to these k+1 regions as region 0; 1; � � � ; k, respectively.
Clearly, all elements of P in the same region are in the same
update-class. Except for region 0, all other regions are af-
fected. Let n1 = uk+1 and u0 = 0. (Note that region i is
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empty if ui = ui+1.) We will perform combined updates
one region at a time starting from region 1. For all elements
of P in region i, Region(ui : ui+1 � 1), where i � 1, we
�rst combine all necessary updates by computing once the
combined values-to-add Vi = v1 + v2 + � � � + vi. (In fact,
Vi = Vi�1+ vi, i > 1, is simpler.) Then, add Vi to each P [y]
in the range i, i.e., ui � y � ui+1 � 1.

For dimension d > 1, we recursively call a number of
batch-update algorithms for dimension d � 1. First, sort
the k update locations according to the index of the �rst
dimension in the ascending order. Denote the k update lo-
cations (after sorting by the index of the �rst dimension) by
(u1; w1); � � � ; (uk; wk), respectively, where each ui has one
index and each wi contains d � 1 indices. Also, denote
their corresponding values-to-add by v1; � � � ; vk, respectively.
Next, partition the index space of P into k+1 adjoining re-
gions, according to the sorted k indices u1; � � � ; uk, as follows:

Region(0 : u1�1; R2; � � � ;Rd);Region(u1 : u2�1;R2; � � � ; Rd);

� � � ; Region(uk : n1 � 1;R2; � � � ;Rd);

where Ri = 0 : ni � 1 for all 2 � i � d. Each partitioned
region is d-dimensional and may contain elements in di�er-
ent update-classes. As before, refer to these k + 1 regions
as region 0; 1; � � � ; k, respectively. Also, region 0 is not af-
fected, as before. We will perform combined updates one
region at a time starting from region 1. For each region i,
i � 1, we will apply the (d � 1)-dimensional batch-update
algorithm with inputs as follows: i) there are i updates; ii)
the i update locations are w1; � � �wi; iii) the i correspond-
ing values-to-add are v1; � � � ; vi; and iv) the index space of
P (now (d � 1)-dimensional) is R2 � � � � � Rd (recall that
Ri = 0 : ni � 1 for all 2 � i � d).

Then, for every combined values-to-add of P (y1; � � � ; yd�1)
generated as output from the (d�1)-dimensional algorithm,
we apply it, instead, to the value-to-add of P (x; y1; � � � ; yd�1)
for all ui � x � ui+1 � 1.

Theorem 2 The batch-update algorithm will group all af-

fected elements of P into up to
Qd�1

j=0
(n+j)
d! regions with

the two properties described above and perform the k batch-
updates correctly.

5.2 The Batch-Update Algorithm for b > 1

We now consider the case when the blocked algorithm is
used, i.e., b > 1. A simple two-phase algorithm similar to
the one in Subsection 4.3 is su�cient. In the �rst phase, for
every d-dimensional block of form b � b � � � � � b, we sum
up all values-to-add for all updates of A in the block. Thus,
the index space of A has been contracted by a factor of b on
every dimension during this phase. In the second phase, we
apply the algorithm described in the preceding subsection
to the contracted array of A treating each block of A as one
element of A, treating the combined values-to-add for each
block as a value-to-add for each element of A, and treating
the blocked pre�x-sum array P as the basic pre�x-sum array
P .

6 The Range-Max Algorithm

In this section, we present a tree-based algorithm for range-
max queries. The data structure we propose for storing
the precomputed information can be viewed as a general-
ized quad-tree [Sam89]. Each non-leaf node x \covers" a

level

3

2

1

0
000 001 002 010 011 012 020 021 022

00* 01* 02* 10* 11*

100 101 102 110 111

0** 1**

***

Figure 9: An example of the b-ary tree with n = 14 and
b = 3.

d-dimensional region (a hyper-cube), denoted C(x), con-
taining all the leaf nodes of the subtree rooted at x. We
will precompute the index of the maximum value in region
C(x) and store it at node x. The region covered by a non-
leaf node x is partitioned into up to bd disjoint regions, each
covered by one of its children. We thus have a balanced tree
structure with roughly the same fanout for each node.

We use a branch-and-bound[Mit70]-like procedure to
speed up the �nding of max in a query region using this data
structure. We will use R to denote the region (or range) of
the input query; use Max as a function that takes a region
as an argument and returns the maximum value in the re-
gion; and use max as the traditional function that returns
the maximum value of a set or of all input arguments. For
clarity, we �rst discuss the one-dimensional case, and then
generalize to d-dimensions.

6.1 The One-Dimensional Case

6.1.1 Constructing the Tree

We will call the leaves of a tree level-0 nodes. A node is said
to be at level i+ 1 if the maximum level of its children is i.
We consider trees where each non-leaf node, except possibly
for one node per level, has precisely b children. The number
b is called the fanout of the tree. When we draw the tree
by levels, we place the node with less than b children as the
rightmost one within its level. We store the entries of the
one-dimensional array A (of size n) as the leaves. Then,
we build a b-ary tree in a bottom-up manner and from left
to right within each level as follows. We partition A into
disjoint ranges, each consisting of b entries, except possibly
the last one. For each such range, we add a parent node
to the b nodes in the range, compute the Max index of the
range, and keep it at the parent node. The last parent node
may have less than b children. We then recursively apply the
same procedure to the dn=be new parent nodes by viewing
them as an array A of size dn=be, until there is only one
parent node at the same level which will be the root of the
tree. Figure 9 shows an example of n = 14 and b = 3.
Clearly, the root of the tree is at level dlogb ne.

We now describe the addressing scheme of the tree. Let
� = dlogb ne. We use \jj" to denote the concatenation of two
strings and use (ci) to denote the string of i repetitions of
the character c. First, all the leaves are encoded as �-digit
base-b strings, starting with (0�) on the left, and proceeding
to the right. Then, all nodes at level i, i > 0, are encoded
as �-digit base-b strings, starting with (0��ijj�i) on left, and
proceeding to the right (see Figure 9).
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Figure 10: Searching a b-ary tree with n = 14 and b = 3.

6.1.2 Finding the Lowest-Level Node Covering a Region

Let us denote by (` : h) the region of A consisting of all
i such that ` � i � h. The region covered by a non-leaf
x, denoted C(x), is the region covered by the leaves of the
subtree rooted at x. For example, in Figure 10 the region
covered by x2 is C(x2) = (0 : 8).

Given any range R = (` : h), we now derive the lowest-
level node covering the region R. This node is used by the
algorithm below. Represent both ` and h by �-digit base-b
strings. Let ` = (u1 � � �u�), let h = (v1 � � � v�), and assume
the �rst w digits of ` are the same as that of h (i.e., u1 =
v1; : : : ; uw = vw and uw+1 6= vw+1). Then, the lowest-level
node x = (u1 � � �uwjj���w). Clearly, node x is at level ��w

and C(x) contains at most b��w nodes. It takes no more
than � comparisons of characters to �nd w, so this step
takes O(log n) time.

6.1.3 The Search Algorithm

Notation Given a non-leaf node x and a region R, we
will categorize each (immediate) child of x, say y, as one of
the three types: (1) an internal node, if C(y) � R; (2) an
external node, if C(y) \ R = �; and (3) a boundary node,
otherwise (that is, if C(y) \ R 6= � and C(y) 6� R). Thus,
we partition the immediate children into (up to) three sets:
(1) I(x;R) contains all the internal nodes, (2) E(x;R) con-
tains all the external nodes, and (3) B(x;R) contains all
the boundary nodes. For example, in Figure 10 given a re-
gion R = (2 : 5), then I(x2;R) = fx5g; E(x2;R) = fx6g
and B(x2;R) = fx4g. Note that in the one-dimensional
case, for a given x and R, there are at most two bound-
ary nodes, while there can be any number of internal and
external nodes.

We further partition the set of boundary nodes B(x;R)
into two subsets: (1) Bin(x;R) = fyjy 2 B(x;R),
Max index(C(y)) 2 Rg and (2) Bout(x;R) = B(x;R) �
Bin(x;R). Note that whether a node in B(x;R) is in
Bin(x;R) or in Bout(x;R) depends on the data distribution.
Use Figure 10 as an example again. Assume R = (2 : 5).
If Max index(C(x4)) = 2, then Bin(x2;R) = fx4g. If
Max index(C(x4)) = 0 or 1, then Bout(x2;R) = fx4g.

The algorithm of Max index(R) is expressed in pseu-
docode in the following.

Function Max index (R)

(1) let R = (` : h);

(2) current max index = `;
(3) let x be the lowest-level node such that R � C(x);
(4) if Max index(C(x)) is in the region R
(5) return (Max index(C(x)));
(6) else
(7) return (get max index(x;R; `));

Function get max index (x;R; current max index)

(1) for all y 2 I(x;R) [Bin(x;R) do
(2) if (Max(C(y)) > A[current max index])
(3) current max index = Max index(C(y));
(4) for all z 2 Bout(x;R) do
(5) if (Max(C(z)) > A[current max index])
(6) current max index = get max index

(z;R \C(z); current max index);
(7) return (current max index);

Explanation of the Algorithm In line (3) of Max index,
we �nd a node x, which is the lowest-level node contain-
ing region R, using the method described before. Note that
Max index(C(x)) is the index of the maximum in region
C(x) while we are interested in �nding the index of the
maximum in region R. Thus, if Max index(C(x)) falls in
region R, then the maximum index is found (lines (4) and
(5)). Otherwise, the function calls another recursive func-
tion get max index instead.

The recursive function get max index(x;R,
current max index) takes as inputs the root of a subtree
containing R, the region R, and an index to the maxi-
mum value currently known (current max index). Note
that current max index was arbitrarily set to ` before call-
ing get max index the �rst time. In lines (1) to (3), we
�nd the Max index of all regions C(y) for all y 2 I(x;R) [
Bin(x;R) and update current max index whenever neces-
sary. Recall that any node y 2 Bin(x;R) has the property
that Max index(C(y)) 2 R even though C(y) 6� R. In lines
(4) to (6), we �nd the Max index of all regions C(z) for
all z 2 Bout(x;R) by recursively calling the same function.
The condition at line (5) is used to improve the running
time. The idea here is similar to that used in a branch-and-
bound algorithm [Mit70]. If a precomputed Max(C(z)) is
already less than or equal to A[current max index], then
there is no need to �nd Max(C(z) \ R) because it is still
less than or equal to A[current max index] and would not
a�ect the result.

The Worst-Case Complexity To analyze the worst-case
complexity, denote by r = h � ` + 1 the size of the input
range (` : h). Clearly, during a call to the function no more
than b nodes are accessed directly, and then a recursive call
may be made to function on at most two ranges, each of size
not greater than r=b, and subsequent calls give rise to only
one such range per call. This implies that the total number
of nodes accessed is of order O(b logb r).

A worst case scenario is that the user-speci�ed region is
covered by all the leaves of a complete b-ary subtree except
for the �rst and the last leaves (i.e., r + 2 is a power of b),
and the �rst and the last leaves have values larger than any
other leaf.

In line (3) of function Max index, we always �nd the
lowest-level node containing the input region R. This is im-
portant in guaranteeing that the complexity of our algorithm
is bounded from above by O(b logb r). Without this feature,
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one may have to search from the root of the tree, resulting
in complexity of O(b logb n) which can be much larger when
r � n.

The Average-Case Complexity We now show that the
average-case complexity is in fact bounded from above by
b+ 7+ 1=b, much less than the worst-case bound.

Theorem 3 The average-case complexity of the tree algo-
rithm is bounded from above by b+ 7+ 1

b .

6.2 The d-Dimensional Case

Let B = bd. For the d-dimensional case, we will build a B-
ary tree (of order b�� � � � b) out of the d-dimensional array
A in a bottom-up manner as a natural generalization of the
1-dimensional case. More speci�cally, we will partition the
array A into blocks of size of at most b�� � �� b each. Then,
all nodes in the same block are connected to a newly added
parent node at level 1. Then, iterate the same procedure for
all the new parent nodes at level 1 (by viewing them as the
array A of order dn1=be � � � � � dnd=be). Since the values
of the ni's may di�er, the tree may degenerate into a lower
dimension when it grows higher.

The search algorithm described above for the one-dimen-
sional case can be directly applied to the d-dimensional
case. The d-dimensional region is speci�ed by R = (`1 :
h1; : : : ; `d : hd). The de�nitions of I(x;R), E(x; R),
Bin(x;R) and Bout(x;R) are exactly the same except that
the region R is d-dimensional and x now is a data point
in the d-dimensional space. Given any region R = (`1 :
h1; : : : ; `d : hd), we let ri = hi � `i + 1, rmin = mini2Dfrig,
and rmax = maxi2Dfrig. Then, the number of nodes that
need to be accessed may be reduced from the volume of the
region R, depending mostly on rmin and rmax. In particular,
if rmin is large relative to b and rmin is close to rmax, then
the savings in time (compared to a method without precom-
puting) is generally large. Also, if rmin > 2b� 2 then there
always exists a reduction in the e�ort of accessing the ele-
ments of A. Note that the previous one-dimensional bound
on the number of nodes accessed, O(b logb r), does not apply
here.

7 The Batch-Update Algorithms for Range-MaxData Struc-
tures

In this section, we describe a batch-update algorithm that
takes a list of update points to array A and modify the pre-
computed information in the tree data structure in addition
to modifying A. The input is a list of update points, each of
form hindex, valuei. For clarity, we assume all update points
have di�erent indices (locations) and all indices of update
points are in the index domain of A. Both restrictions can
be alleviated with minor modi�cations to the algorithm.

Let H = maxi2D dlogb nie be the height of the tree. Re-
call that the i-th level of the tree can be viewed as a con-
tracted array Ai of size

�
n1=b

i
�
� � � � �

�
nd=b

i
�
, 0 � i � H.

(Thus, A0 is the original array A.)
We �rst give a brief overview of the batch-update algo-

rithm. The algorithm has up to H phases (it may terminate
earlier). During phase i, where 0 � i < H, the input list
is scanned once. For each update point on the list read in,
the algorithm will (1) update the corresponding value of Ai;
(2) when necessary, update some auxiliary data structures
associated with Ai+1, create an update point on Ai+1, and
append it to an output list; and (3) modify the output list

to a valid input list for the next phase, if the output list is
not empty.

The algorithm uses some auxiliary data structures. For
each non-leaf node of the tree, we allocates two integer vari-
ables new max index and tag, and one variable max value
of the same type as elements of A. (Thus, when consider-
ing all nodes at level i together, i > 0, new max index, tag
and max value are all d-dimensional arrays, each having the
same number of entries as Ai.) For the purpose of algorithm
description, it is su�cient to describe the processing of all
update points in one sibling set of leaf nodes, denoted S,
with a parent node x at level 1. This sibling set S is orga-
nized as a d-dimensional block, of form b � � � � � b, covered
by x. Let y0 = Max index(C(x)) be the max index of S
and v0 = A[y0].

An update hy; vi is an increase-update if the new value
is larger than the current value (v > A[y]), and is a decrease-
update otherwise. (We ignore an update that does not change
the value.) An increase-update hy; vi is active if v > v0, and
is passive otherwise. A decrease-update hy; vi is active if
y = y0, and is passive otherwise. (Thus, there will be at
most one active decrease-update, since all updates have dif-
ferent indices.)

We will use new max index to store the index of the new
maximum value found so far in S due to updates. We will
use the value of tag, among f�1; 0; 1g, to represent three dif-
ferent states: tag = 0 means no need to update the parent
node; tag = 1 means the parent node needs to be updated
by new max index; and tag = �1 means the value indexed
by new max index has been reduced and the current cor-
rect max index cannot be uncovered without searching the
whole S.

We now describe the algorithm for phase 0. First,
tag is initialized to 0, new max index to max index, and
max value to A[max index]. For each update point hy; vi
scanned in, we process according to the following rules:

1. If A[y] < v (an increase-update):

(a) Set A[y] = v.

(b) If v > A[new max index] (active), then set tag =
1 and new max index = y.

(c) If v = A[new max index] and tag = �1, then set
tag = 1 and new max index = y.

2. If A[y] > v (a decrease-update):

(a) Set A[y] = v.

(b) If max index = y (active) and tag = 0, then set
tag = �1.

Passive updates (increase or decrease) will not change
the values of y0 and v0, and will be ignored. For each ac-
tive increase-updates hy; vi, we will compare its new value
v (which is larger than v0) against A[new max index]. If
v > A[new max index], we will update new max index = y
and set tag = 1 (from a previous value of possibly 0, 1 or
�1).

We now explain rule 2(b). If there is at least one ac-
tive increase-update before an active decrease-update on
the list (tag = 1), then the active decrease-update will be
ignored. The only time that the current maximum index
and value information in S may be lost is when there is
no active increase-update before the active decrease-update
(i.e., tag = 0 before processing the active decrease-update).
However, any future active increase-update can recover the
current maximum index and value information in S. If
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V volume of query
xi length of the query in dimension i

S total surface area of query (=
Pd

i=1 2V=xi)

Table 1: Query Statistics.

there is no future active increase-update on the input list,
then tag = �1 when the end of the list is reached. Af-
ter all update points have been scanned and processed, we
need to search the entire set S for which tag = �1 to �nd
new max index.

8 Tree Hierarchies for Range-Sum Queries

A natural question to ask is whether the tree structures
used for range-max queries are good data structures for
range-sum queries. A range-sum query may be answered
by traversing the tree and adding or subtracting the values
at various tree nodes that collectively de�ne the query re-
gion. However, unlike the range-max queries, the branch-
and-bound optimization cannot be applied to range-sum
queries. In this section, we show that with the same storage
overhead, a tree-based range-sum algorithm is inferior to the
pre�x-sum-based algorithm. We develop cost equations to
compare the performance of the pre�x-sums technique with
this hierarchical-tree technique. We use the number of ele-
ments required to answer the query as a proxy for response
time. The cost equations below assume the query statistics
given in Table 1.

Cost Analysis for Pre�x Sum Let b be the block size. A
block size of 1 corresponds to no blocking. The average cost
is approximately

2d + SF (b) (3)

where

F (b) =

�
b=4 if b is even;
b=4 � 1=(4b) if b is odd.

SF (b) corresponds to the average number of elements in the
superblock region that will have to be accessed to answer the
query. Since we can take the complement of the query in the
superblock region, F (b) is around b=4 rather than b=2. Note
that this formula gives the right cost for the basic algorithm
since F (1) = 0. For b > 1, we can approximate F (b) to b=4.

For very small queries where V < SF (b), this formula is
somewhat pessimistic since (1) the 2d part would disappear
as there would not be any complete blocks inside the query
and (2) the formula assumes that F (b) is typically greater
than xi. (If F (b) < xi, we can add the V points in the query
at less cost than adding SF (b) points.)

Cost Analysis for Hierarchical Trees Consider a tree with
a fanout of b in each dimension, for a total fanout of bd. Let
the depth of the tree be t. The intuition behind the cost
formula is that at the lowest level of the tree, the number
of elements that have to be accessed is the same as for a
blocked pre�x sum with a block size of b (ignoring the 2d

cost). Since subtraction may be used in the tree algorithm
(for a fair comparison), F (b) remains about b=4, not b=2.
At each higher level, the cost is reduced by a factor of bd�1

since the \surface area" is reduced by that amount. Hence
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Figure 11: Cost with Hierarchical Tree � Cost with Pre�x
Sum.

the average cost is approximately

F (b)�

t�1X
k=0

S

bk(d�1)
:

Comparison We assume that the same block size b is used
for both pre�x sum and the tree. (We are giving space
advantage to the tree with this assumption.) Approximating
F (b) to b=4, the cost for the pre�x sum is 2d+Sb=4, whereas

the cost for the tree is
Pt�1

k=0
Sb=4

bk(d�1)
. Hence

Cost with Hierarchical Tree� Cost with Pre�x Sum

=

t�1X
k=1

Sb=4

bk(d�1)
� 2d >

S=4

bd�2
� 2d:

If we further assume that the queries have a length of �b in
each dimension, S = 2d(�b)d�1, and the di�erence in cost
becomes d�d�1b=2�2d. For queries where �b is signi�cantly
greater than the block size the pre�x sum is clearly faster.
For small queries where �b is less than or roughly equal
to the block size, the 2d factor would usually disappear for
the pre�x sum since there may not be any complete blocks
inside the query. Hence the cost would be comparable for
both methods. Figure 11 shows the di�erence in cost as �
changes for di�erent values of b and d.

9 Choosing Dimensions, Cuboids and Block Sizes

In this section, we discuss how to choose the subset of the
data cube dimensions for which the auxiliary information is
computed and the blocking factor to use for each such sub-
set. While we restrict our discussion to range-sum queries,
similar techniques can be applied to range-max queries.

Given a cube on d dimensions, a cuboid on k dimensions
fdi1 ; di2 ; :::; dikg is de�ned as a group-by on the dimensions
di1 ; di2 ; :::; dik [AAD+96]. The cuboid corresponds to the
slice of the cube where the remaining d�k dimensions have
the value all.

1. Choosing Dimensions. It may be bene�cial to not
calculate pre�x sums along some attributes of the cube
to reduce the average-case time (at the risk of increas-
ing the worst-case time). We discuss the problem of
identifying such dimensions in Section 9.1.
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2. Choosing Cuboids. Having decided to compute the
pre�x sums along some dimensions, if there is enough
space to compute the pre�x sum without blocking for
the whole cube, we are done. If not, we need to decide
for which cuboids the pre�x sum should be computed,
and with what block sizes. We present a greedy al-
gorithm for this problem in Section 9.2, assuming a
\magic formula" that tells us the block size that max-
imizes the ratio of bene�t to space for a given cube.
(The bene�t is de�ned as the reduction in the cost of
answering queries.)

3. Choosing Block Size. We show the derivation of
formulae for the block size that maximizes the bene-
�t/space ratio in Section 9.3.

For example, consider a data cube with three dimensions
hd1, d2, d3i. There are seven possible cuboids (including the
cube itself) for which we could compute pre�x sums: hd1,
d2, d3i, hd1, d2i, hd1, d3i, hd2, d3i, hd1i, hd2i, and hd3i.
We may �rst decide that all the queries on dimension d3 do
not involve ranges and hence even for cuboids that include
dimension d3, the pre�x sum would only be computed on
other dimensions. Next, we may decide to compute a pre�x
sum on hd1, d2, d3i with a block size of 10 and another pre�x
sum on hd1, d2i with a block size of 1.

If one cuboid has a subset of the dimensions of another
cuboid, we call the former a descendant of the latter, and
the latter an ancestor of the former. For example, hd1, d3i
is a descendant of hd1, d2, d3i and an ancestor of hd3i. Note
that if we compute a pre�x sum on some cuboid with block
size b, there is no bene�t to computing a pre�x sum on any
of its descendants unless the block size is smaller.

We assume that we are given either a query log, or statis-
tics which capture the average query statistics for each cuboid
as well as the number of queries (denoted by NQ). Queries
with ranges on dimensions d1 and d2 and all on dimension
d3 will be assigned to the cuboid hd1, d2i, and so on. In
this section, we use the notation in Table 1 to denote the
average rather than the numbers for a single query.

9.1 Choosing Dimensions

First, we assume that the basic algorithm is used (i.e., b =
1). Depending on the queries, it may be bene�cial with
respect to performance to choose a subset of the dimensions
upon which P is de�ned. Consider an example with d =
3 dimensions, labeled d1; d2; d3. If all range-sum queries
specify only one index with respect to dimension d3, then
the pre�x-sum structure along dimension d3 is not needed.
Hence for the cuboid hd1; d2; d3i, the pre�x sum will only
be calculated along dimensions d1 and d2. As a result, only
22 � 1 = 3 steps is required for each range-sum query as
opposed to 23 � 1 = 7 steps.

We now address the performance issues in choosing a
proper subset of data cube dimensions. Let X be the set of
d dimensions of the original data cube. Thus, jXj = d. We
will choose a subset X 0 of X, where jX 0j = d0. We say that
an attribute a 2 X is active with respect to a range-sum
query q if the selection upon the attribute is a contiguous
range in its domain and the range is neither a singleton (i.e.,
a single value in the domain) nor all. An attribute is passive
with respect to a range-sum query if it is not active. Given a
query q, the best way of choosing X 0 among X is clearly to
let X 0 contain exactly all active attributes with respect to q.
However, given a set of collected queries from the OLAP log,
Q = fq1; q2; � � � ; qmg, the best way of choosing X 0 among

Attribute 1 2 3 4 5

q1 1 100 1 3 1
q2 200 1 100 1 1
q3 500 500 1 1 1

Rj 701 601 102 5 3

Figure 12: Example of the heuristic algorithm in choosing
X 0 = f1; 2; 3g.

X that minimizes the overall query time complexity with
respect to Q is an optimization problem.

First, we have a few observations (and the details are
omitted here). A simple lower bound for the time com-
plexity of any algorithm that gives an optimal solution is
O(md). A naive algorithm that gives an optimal solution
requires O(md2d) time: there are 2d di�erent choices for
X 0 and each choice requires O(md) time to evaluate the
cost. We now sketch an O(m2d)-time algorithm that gives
an optimal solution. It is possible to arrange the cost evalu-
ations of the 2d choices of X 0 in an order such that any two
adjacent choices only di�er in one attribute. (Such an or-
dering can be easily derived from the binary-reected Gray
code [RND77].) With such an ordering, the cost evaluation
of each choice can be derived from its preceding choice in
O(m) steps, with the exception of the �rst choice whose cost
can be derived in O(md) steps.

Finding an algorithm that gives an optimal solution and
requires a time less than O(m2d) is an open problem. In
the following, we give a very simple heuristic algorithm of
time complexity O(md). Let X = fd1; d2; � � � ; ddg. With
respect to query qi and attribute dj, let rij be the length of
its range if the attribute is active, and be 1 if the attribute
is passive. (Recall that for a passive attribute, its range is
either of length 1 or is all). Then, Let Rj =

Pm

i=1
rij for all

j 2 D. We will then de�ne

X 0 = fdjjRj � 2mg:

Figure 12 shows an example of this.
The intuition behind the heuristic algorithm is as follows.

For a given query qi and given attribute dj, if dj 2 X 0

then the time complexity factor for the query qi contributed
by attribute dj is 2; otherwise it is rij . Note that this is
a multiplicative factor. The heuristic algorithm is derived
from a simpli�ed assumption: the time complexity factor
contributed by the product of all other attributes are the
same for all queries.

9.2 Choosing Cuboids

We de�ne the bene�t of a particular solution to be the re-
duction in the cost of answering all the queries. Given a
�xed amount of space in which to store all the pre�x sums,
the problem is to �nd the set of pre�x sums (and block
sizes) that maximize the bene�t. Since this problem is NP-
complete (reduction from Set-Cover), we use heuristics to
get approximate solutions.

This problem is similar to the problem of deciding which
cuboids to materialize considered in [HRU96]. However, the
latter problem is somewhat simpler since the choice for each
cuboid is whether or not to materialize. In our case, in ad-
dition to determining whether or not to compute the pre�x
sum for a cuboid, we need to determine what the block size
should be in each dimension.
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// Greedy Algorithm
Ans = �;
while space < limit do begin

foreach cuboid 62 Ans do
Compute block sizes for best ratio of bene�t to space.

Add cuboid that resulted in the best
bene�t/space ratio to Ans

end

// Fine-tuning the output of the Greedy Algorithm
do

foreach cuboid X 2 Ans do
Drop an X from Ans.
foreach cuboid 62 V do

Compute block sizes for best ratio of bene�t to space.
Add cuboid that resulted in the best

bene�t/space ratio to V .
end

until no improvement.

Figure 13: Greedy Algorithm.

We present a greedy algorithm for choosing cuboids and
block sizes in Figure 13. The �rst half of the algorithm is a
simple greedy search, similar to the algorithm in [HRU96].
We illustrate the intuition behind the rest of the algorithm
with an example. Assume the greedy search �rst computed
pre�x sum with block sizes b for the cuboid hd1, d2i. If the
greedy search later computes the pre�x sum for the cuboid
hd1i with block size b0 < b, some other block sizes b00 may
give a better bene�t/space ratio for hd1, d2i. In fact some
other cuboid, say hd2, d3i may now have a better bene-
�t/space ratio than hd1, d2i since the pre�x sum for hd1, d2i
no longer provides any bene�t to the cuboid hd1i.

9.3 Choosing Block Sizes

We refer to the cuboid for which we are currently trying to
�nd the maxima of the bene�t/space function as the current
cuboid. The problem is to �nd the block size that results in
the maximum value of bene�t/space. We initially ignore the
bene�t for the descendant cuboids of computing the pre�x
sum for the current cuboid.

Let the current cuboid have d dimensions and N cells.
We use the cost formulae from Section 8, but split the cases
for b = 1 (no blocking) and b > 1 in order to get a smooth
function for the cost. We compute the bene�t/space ratio for
b = 1 as well as for the maxima of the bene�t/space function
for b > 1 and choose whichever has a higher bene�t/space
ratio. For b > 1, we approximate F (b) to b=4.

Cost without pre�x sum = NQV

Cost with pre�x sum = NQ(2
d + Sb=4)

Bene�t = NQ(V � 2d � Sb=4)

Space required = N=bd

Bene�t/Space = NQ(V � 2d � Sb=4) = (N=bd)

= (NQ=N)

� [(V � 2d)bd � (S=4)bd+1 ]

If V � 2d � 0, there is no bene�t to computing the pre�x
sum with or without blocking. If V � 2d � S=4, there is no
bene�t to computing the pre�x sum with blocking. Hence
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Figure 14: Behavior of bene�t/space w.r.t. block size

we only consider the case where V � 2d > S=4 when trying
to �nd the maxima of the bene�t/space function.

For example, for d = 3, NQ=N = 1=100, V � 2d = 1000
and S = 400, the bene�t/space graph would look as shown
in Figure 14. When b = 4(V � 2d)=S, the bene�t becomes
0. This corresponds to block sizes that are so high (relative
to query sizes) that there is no advantage to computing the
pre�x sum.

Di�erentiating w.r.t. b to �nd the maxima, we get

(NQ=N)� [(V � 2d)dbd�1 � (S=4)(d+1)bd ] = 0:

The solutions are b = 0 (corresponding to in�nite space) and

b =
V � 2d

S=4
�

d

d+ 1
:

To check that this is a maxima and not a minima, we com-
pute the second di�erential,

(NQ=N)� [(V � 2d)d(d� 1)bd�2 � (S=4)(d+1)dbd�1 ]:

The second di�erential will be negative if

b >
V � 2d

S=4
�
d� 1

d+ 1
:

Hence when b = V�2d

S=4 � d
d+1 , the second di�erential is nega-

tive and the inection is a maxima. The value of b obtained
from this equation may not be an integer. If so, we should
compute the bene�t/space ratio for each of the two integers
that bound b and choose the larger value.

Incorporating the E�ect of Pre�x Sums on Ancestor Cuboids
If any of the ancestors of the current cuboid have a pre�x
sum with block size b0, there is no bene�t to computing a
pre�x sum for the current cuboid with any block size b � b0.
The bene�t function becomes

NQ(2
d + Sb0=4)�NQ(2

d + Sb=4) = NQ(S=4)(b
0 � b)

if b < b0 and 0 if b � b0. The maxima of the bene�t/space
function is b = b0d=(d + 1).

Incorporating the Bene�t for Descendant Cuboids Com-
puting a pre�x sum on a cuboid also bene�ts its descendant
cuboids. For example, a pre�x sum hd1, d2i also helps the
cuboids hd1i and hd2i. Hence, when computing the bene-
�t function, rather than simply considering the bene�t for
hd1, d2i, we also need to add the bene�ts for its descendant
cuboids hd1i and hd2i to the bene�t for hd1, d2i.
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If some descendant cuboid D has a pre�x sum with block
size b0 or an ancestor with a pre�x sums with block size b0,
the bene�t function for the current cuboid will be di�erent
for b < b0 and b � b0. For b < b0, there will be additional
bene�t for D, while the bene�t for D will be 0 for b � b0.
Hence the total bene�t function for the current cuboid will
be of the form �

C1 �C2b if b < b0,
C3 �C4b if b � b0.

where C1; :::;C4 are constants. Thus we di�erentiate both
functions to �nd the maxima, and choose whichever results
in a better bene�t/space. In general, if n of the descendant
cuboids have pre�x sums (either on that cuboid or on an
ancestor of the cuboid), we will have n+ 1 di�erent bene�t
functions for the current cuboid, and we need to �nd the
maxima for each function.

10 Sparse Data Cubes

If the data cube is uniformly sparse, computing a blocked
pre�x sum with an appropriate block size b and storing it
as a dense array solves the problem. We now discuss solu-
tions for cubes which are not uniformly sparse: a special-case
solution for range-sum queries with one-dimensional cubes,
and a general solution for both range-sum and range-max
queries with d-dimensional cubes.

10.1 The One-Dimensional Case for Range-Sum Queries

When b = 1, the pre�x-sum array P has the same sparse
structure as the one-dimensional data cube A. Given a range
(` : h), we only need to �nd out the �rst non-zero P [^̀] where
^̀� ` and the �rst non-zero P [ĥ] where ĥ � h. We can build

a B-tree index [Com79] on P to �nd ĥ and l̂. A similar
solution applies to the case where b > 1.

10.2 The d-Dimensional Case for Range-Sum Queries

We �rst �nd a set of non-intersecting rectangular dense
regions. One approach to �nding these regions would be
to use clustering (e.g. [JD88].) However, clustering al-
gorithms typically generate centers of clusters and require
post-processing to generate rectangular regions. Some clus-
tering algorithms in image analysis (e.g. [BR91] [SB95])
�nd rectangular dense regions, but are designed for two-
dimensional datasets. Hence we use a modi�ed decision-tree
classi�er [SAM96] to �nd dense regions (non-empty cells are
considered one class and empty cells another). The modi�-
cation to the classi�er is that the number of empty cells in a
region are counted by subtracting the number of non-empty
cells from the volume of the region. This lets the classi�er
avoid materializing the full data cube.

Once the dense regions have been found, we compute the
pre�x sum (or a blocked pre�x sum) for each dense region.
The boundary of each dense region is added to an R* tree
[BKSS90], along with a pointer to the dense region. All
points not in a dense region are also added to the R* tree.

Given a range-sum query, we �nd all dense regions that
intersect the query by searching the R* tree. For each such
region, we use the pre�x sum to get the sum of the elements
in the intersection of the dense region and the query. Finally,
we add the sum of all points in the R* tree that lie within
the query region to get the range sum.

10.3 The d-Dimensional Case for Range-Max Queries

For range-max queries, we can replace the static �xed-fanout
tree structure by any other tree structure without a�ecting
the correctness of the algorithm. In the tree, a rectangu-
lar region, represented by a tree node, may be split into a
number of intersecting regions, each represented by a child
node. Thus, the R* tree [BKSS90] is a good data structure
in the sparse data cube. Note that in this case where a dy-
namic tree is used, one needs to traverse starting from the
root because the lowest-level node covering the query region
cannot be located in constant time.

11 Conclusion

In this paper, we have presented fast algorithms for com-
puting range-sum and range-max queries on a data cube in
an OLAP system. The main idea for speeding up range-
sum queries is to precompute multidimensional pre�x-sums
of the data cube. Then, any range-sum query can be an-
swered by accessing 2d appropriate pre�x-sums. The total
storage requirement can be kept to be the same as the data
cube with a slight increase in time for queries of a singleton
cell, because any cell of the data cube can be computed with
the same time complexity as a range-sum query.

Alternatively, one can trade time for space by precom-
puting and storing the multidimensional pre�x-sums only at
a block level, so that the blocked array P can �t in mem-
ory. In this case, any range-sum query can be answered
by accessing block-level 2d pre�x-sums as well as some cells
of the data cube. The overall query response time is still
signi�cantly better than that without any precomputed in-
formation or with precomputed tree hierarchies. Indeed,
our prototype implementation con�rmed the bene�t of these
techniques, with the advantage increasing as the volume of
the circumscribed query sub-cube increases.

For range-max queries, we construct a generalized quad-
tree on the data cube and store in each tree node the index of
the maximum value in the region covered by that node. We
then use a branch-and-bound[Mit70]-like procedure to speed
up the queries. We show that with a branch-and-bound
procedure, the average-case complexity is much smaller than
the worst-case complexity. We also give a simple incremental
algorithm to handle the data cube update.

For some datasets, it may be bene�cial to not calculate
pre�x sums along some dimensions of the cube to reduce
the average-case time. We presented an algorithm for iden-
tifying such dimensions. Given a �xed amount of space, we
presented an algorithm for choosing for which cuboids pre�x
sums should be calculated and with what block sizes in order
to minimize the total response time. Similar optimization
techniques can be applied to range-max queries.

In a real OLAP environment, users typically search for
trends, patterns, or unusual data behavior by issuing queries
interactively. Thus, users may be satis�ed with an approxi-
mate answer for a query if the response time can be greatly
reduced. As an o�-shoot of the range-sum block algorithm,
one can implement the range-sum algorithm so that an up-
per bound and a lower bound on the range-sum are returned
to users �rst, followed by a real sum when the �nal compu-
tation is completed. This is because each bound can be
derived in at most 2d � 1 computation steps. The same
approximation approach can be applied to the range-max
queries using the tree algorithm.
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Appendix: Proofs of Theorems

Theorem 1 For all j 2 D, let

s(j) =
n
1; if xj = hj,
�1; if xj = `j.

Then, for all j 2 D,

Sum(`1 : h1; `2 : h2; � � � ; `d : hd)

=
X

8xj2f`j�1;hjg

( 
dY
i=1

s(i)

!
� P [x1; x2; � � � ; xd]

)
:

Proof: We assume that d, nj, j 2 D, and A are all given as
input. Also, assume P [x1; x2; � � � ; xd]'s as de�ned in Equa-
tion 1 have been precomputed for all 1 � xj � nj and j 2 D.
We will prove the theorem by proving the following equation
instead, for all t 2 D, by induction:

Sum(`1 : h1; � � � ; `t : ht; 0 : xt+1; � � � ; 0 : xd)

=
X

8xj2f`j ;hj g;1�j�t

( 
tY

i=1

s(i)

!
� P [x1; � � � ; xd]

)
:(4)

(This theorem is then a special case of this equation by
letting t = d.) Note that the range of index j is 1 � j �
t, that is there are only 2t terms of P [x1; x2; � � � ; xd] (as
opposed to 2d such terms).

For the basis t = 1, it can be shown from the de�nition
of P . Assume, for the sake of induction hypothesis, that
Equation 4 holds for t = k for some k where 1 � k < d.
That is, we have

Sum(`1 : h1; � � � ; `k : hk; 0 : xk+1; � � � ; 0 : xd)

=
X

8xj2f`j ;hjg;1�j�k

( 
kY
i=1

s(i)

!
� P [x1; � � � ; xd]

)
:(5)

We wish to show that Equation 4 still holds for t = k + 1.
By letting xk+1 = `k+1 in Equation 5, we have

Sum(`1 : h1; � � � ; `k : hk; 0 : `k+1; 0 : xk+2; � � � ; 0 : xd) (6)

=
X

8xj2f`j ;hjg;1�j�k

( 
kY
i=1

s(i)

!

� P [x1; � � � ; xk; `k+1; xk+2; � � � ; xd]g : (7)

Similarly, by letting xk+1 = hk+1 in Equation 5, we have

Sum(`1 : h1; � � � ; `k : hk; 0 : hk+1; 0 : xk+2; � � � ; 0 : xd) (8)

=
X

8xj2f`j ;hjg;1�j�k

( 
kY
i=1

s(i)

!

� P [x1; � � � ; xk; hk+1; xk+2; � � � ; xd]g : (9)

For convenience, denote the terms in Equations 6 through 9
by T1; T2; T3 and T4, respectively. Notice that

Sum(`1 : h1; � � � ; `k : hk ; `k+1 : hk+1; 0 : xk+2; � � � ; 0 : xd)

= T3 � T1 = T4 � T2

=
X

8xj2f`j ;hjg;1�j�k+1

( 
k+1Y
i=1

s(i)

!
� P [x1; x2; � � � ; xd]

)
:

That is, we have shown Equation 4 holds for t = k+1. This
completes the proof of the theorem. 2

Theorem 2 The batch-update algorithm will group all af-

fected elements of P into up to
Qd�1

j=0
(n+j)
d! regions with the

two properties described above and perform the k batch-
updates correctly.

Proof: We �rst prove, by induction on d, that the algo-
rithm is correct. For d = 1, the correctness can be ob-
served trivially. Assume, for the sake of induction hypothe-
sis, that the algorithm is correct for d � 1 dimensions. We
wish to show that the batch-update algorithm for d dimen-
sions is still correct. Consider any two elements that are
in the same region (partitioned from the d-dimensional in-
dex space of P ) and only di�er in the �rst index. Observe
that they are in the same update-class, because there is no
update locations between these two elements. This means
that for region i we can �rst concentrate on the update-class
for the (d � 1)-dimensional index space of P with the �rst
index being ui, then apply the same update along dimen-
sion 1 within this region. To solve the update-class for the
(d � 1)-dimensional index space of P with the �rst index
being ui, one simply projects, along dimension 1, all loca-
tions that have the �rst index smaller than or equal to ui.
Thus, locations (u1; w1); (u2; w2); � � � ; (ui; wi) are projected
into locations w1; w2; � � � ; wi and a correct batch-update al-
gorithm for d� 1 dimensions is applied. This completes the
proof of the correctness part.

We now derive the number of partitioned regions cov-
ering all a�ected elements of P at the lowest level of the
recursion. (At this level, all elements in the same region are
in the same update-class.) Let NR(k; d) be the maximum
number of lowest-level regions partitioned from the a�ected
elements of P by the algorithm for k updates and d dimen-
sions. Then, the following recursion is easily derived from
the recursive description of the algorithm:

NR(k; d) =

kX
i=1

NR(i; d� 1)

and NR(k; 1) = k. Through some exercise, one can derive

NR(k; d) =

Qd�1

i=0 (k+ i)

d!
:

As motivating examples for the derived close form for
NR(k; d) above, we have

NR(k; 2) =

kX
i=1

NR(i; 1) = 1 + 2 + � � �+ k =
k(k + 1)

2
:

NR(k; 3) =

kX
i=1

NR(i; 2) =
1 � 2

2
+

2 � 3

2
+ � � �+

k(k + 1)

2

=
k(k + 1)(k + 2)

6
:

2

Theorem 3 The average-case complexity of the tree algo-
rithm is bounded from above by b+ 7 + 1

b
.

Proof: We consider a range of the form [`;h� 1] and de-
note by r = h� ` the size of the range. Let us �rst analyze

the case ` = 0. Suppose h =
Pk

i=0 dib
i where the di's are

natural numbers smaller than b. Denote by F (h) the ex-
pected number of indices checked during the processing of
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the interval [0; h � 1]. Suppose, without loss of generality,
that dk � 1. First, if h = bk, then F (h) = 1 since the maxi-
mum over the interval has been precomputed. Next, suppose
bk < h < bk+1. Consider the ranges Ri = [(i� 1)bk; ibk � 1],
i = 1; 2; : : : ; b. The probability that the maximum over
[0; bk+1�1] falls in the range [0; dkbk�1] = R1 [� � �[Rdk is
dk=b. If it does, then we are done. Otherwise, we �rst access
the maxima over the ranges R1; : : : ;Rdk as well as the one
over the range Rdk+1. If the maximum over the latter is
no larger than the maximum over R1 [ � � � [ Rdk , then we
are done; if not, then we solve the problem, recursively, over
the range [dkbk; h � 1], as a subrange of Rdk+1.1 It is easy
to see that in the latter case all the orders over the data
values at points in Rdk+1 remain equally probable, so we
can use the same function F for describing the average-case
complexity. Next, we analyze the probabilities of the events
that determine the expected number of indices accessed.

Let Ej denote the event in which the maximum over
[0; bk+1 � 1] does not fall in R1 [ � � � [ Rj. Thus Pr(Ej) =
1� j=b. Denote by Fj the event in which the maximum over
the Rj is no larger than the maximum over R1 [ � � � [Rj�1.
By de�nition, Ej \ Fj = Ej+1 \ Fj. Thus,

Pr(Ej \ Fj) = Pr(Ej+1 \ Fj) = Pr(Ej+1)Pr(FjjEj+1)

=
�
1�

j + 1

b

�
j

j + 1
:

Denote by �Fj the complement of Fj. It follows that

Pr(Ej \ �Fj) = Pr(Ej)� Pr(Ej \ Fj)

= 1�
j

b
�
�
1�

j + 1

b

�
j

j + 1
=

1

j + 1
:

We can now estimate F (h) as follows.

F (h) � 1 + Pr(Edk )(dk + 1) + Pr(Edk \ �Fdk)F (h� dkb
k)

= 1 +
�
1 �

dk
b

�
(dk + 1) +

1

dk + 1
F (h� dkb

k) :

To establish that the expected time is bounded by a con-
stant, note that

F (h) < max
x

n
1 +

�
1�

x

b

�
(x+ 1)

o
+

1

2
F (h� dkb

k)

=
1

4
b + 1:5 +

1

4b
+

1

2
F (h� dkb

k)

(where x = (b�1)=2 gives the maximum) and this inequality
implies, by induction, that for all h,

F (h) <
1

2
b+ 3 +

1

2b
:

Next, for a general interval [`; h� 1], after the �rst level,
if the maximum has not been found, then the problem is
reduced to at most two problems over ranges of the form
[`0; n� 1] and [0; h0 � 1], to which our upper bound applies.

Suppose the smallest complete subtree that covers the
given range is of size bk+1. Denote by x the number of
subtrees of size bk contained in the range. Obviously, 0 �
x � rb�k , so r � xbk. Then the �rst phase accesses one
index at the root, and with probability 1 � r

bk+1
we will

have to access the roots of x internal subtrees in addition
1In fact, if the maximum over Rdk+1 falls in the query range we

are done, but we ignore this event in the probabilistic analysis.

to, on the average, at most b+6+ 1
b more nodes in the two

boundary problems.
Thus, the expected number of accesses for an interval of

length r is bounded from above by

h(r) = 1 +
�
1�

r

bk+1

��
x+ b+ 6+

1

b

�
� 1 +

�
1�

x

b

��
x+ b+ 6 +

1

b

�
:

The function on the right-hand side attains its maximum
over [0; b � 1] at x = 0, where its value is b + 7 + 1

b . This
proves our claim. 2
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