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Abstract

Association rule algorithms can produce a very large
number of output patterns. This has raised questions
of whether the set of discovered rules \over�t" the data
because all the patterns that satisfy some constraints
are generated (the Bonferroni e�ect). In other words,
the question is whether some of the rules are \false
discoveries" that are not statistically signi�cant. We
present a novel approach for estimating the number of
\false discoveries" at any cuto� level. Empirical eval-
uation shows that on typical datasets the fraction of
rules that may be false discoveries is very small. A
bonus of this work is that the statistical signi�cance
measures we compute are a good basis for ordering the
rules for presentation to users, since they correspond
to the statistical \surprise" of the rule. We also show
how to compute con�dence intervals for the support
and con�dence of an association rule, enabling the rule
to be used predictively on future data.

1. Introduction

The problem of mining association rules was introduced

in (Agrawal, Imielinski, & Swami 1993). The input con-

sists of a set of transactions, where each transaction is a

set of literals (called items). An example of an associa-

tion rule is: \30% of transactions that contain beer and

potato chips also contain diapers; 2% of all transactions

contain all of these items". Here 30% is called the con-

�dence of the rule, and 2% the support of the rule. The

problem is to �nd all association rules that satisfy user-

speci�ed minimum support and minimum con�dence

constraints. Applications include discovering a�nities

for market basket analysis and cross-marketing, cata-

log design, loss-leader analysis and fraud detection. See

(Nearhos, Rothman, & Viveros 1996) for a case study

of a successful application in health insurance, and (Ali,

Manganaris, & Srikant 1997) for applications in medical

research and telecommunications diagnosis.
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Association Rules Overview. Let I = fl1, l2, : : :,
lmg be a set of literals, called items. Let D be a set of

transactions, where each transaction T is a set of items

such that T � I. We say that a transaction T contains

a set A of some items in I, if A � T . An association

rule is an implication of the form A) B, where A � I,
B � I, and A \ B = ;. The rule A ) B holds in the

transaction set D with con�dence1 c if c% of transac-

tions in D that contain A also contain B. The rule

A ) B has support s in the transaction set D if s% of

transactions in D contain A[B.2 Given a set of trans-

actions D, the computational task of mining association

rules is to generate all association rules that have sup-

port and con�dence greater than the user-speci�ed min-

imum support and minimum con�dence respectively.

The task of mining association rules is decomposed

into two steps:

� Find all combinations of items that have transaction

support above minimum support. Call those combi-

nations frequent itemsets.

� Use the frequent itemsets to generate the desired

rules. The general idea is that if, say, ABCD and

AB are frequent itemsets, then we can determine if

the rule AB ) CD holds by computing the ratio r =

support(ABCD)/support(AB). The rule holds only

if r � minimum con�dence. Note that the rule will

have minimum support because ABCD is frequent.

The �rst step is responsible for most of the computation

time, and has been the focus of considerable work on

developing fast algorithms, e.g. (Agrawal et al. 1996)

(Brin et al. 1997).

1In other words, the con�dence is the conditional prob-
ability p(BjA).

2The support is the probability of the intersection of the
events.



Related Work. Brin et al. (Brin, Motwani, & Sil-
verstein 1997) used the chi-squared test to look for cor-

related associations, but did not take into account the

number of hypotheses were being tested. Piatetsky-

Shapiro (Piatetsky-Shapiro 1991) had a similar idea

when he argued that a rule X ) Y is not interest-

ing if support(X ) Y ) � support(X) � support(Y ),

but again did not consider the number of hypotheses.

2. Statistical Signi�cance of Association
Rules

In this section, we discuss issues of statistical signi�-

cance of a set of association rules. First, in Section 2.1,

we discuss the statistical signi�cance of a single rule.

However, when we analyze many rules simultaneously,

the signi�cance test has to take into account the num-

ber of hypotheses being tested. This is the so-called

multiple comparisons problem (Hochberg & Tamhane

1987). Typically the test statistics corresponding to

the hypotheses being tested are not independent. It

is important to observe that the number of hypothe-

ses implicitly being tested may be much greater than

the number of output rules; we give an upper bound for

this number in Section 2.2. This bound may, in general,

be too conservative. We o�er a practical way of deal-

ing with this problem in Section 2.3; the idea is to use

resampling to determine a good acceptance threshold.

Finally, in Section 2.4, we describe the computation of
con�dence intervals for the support and con�dence of a

rule.

2.1. Statistical Signi�cance of a Single
Association

We view a dataset consisting of n transactions as the re-

alizations of n independent identically distributed ran-

dom boolean vectors, sampled from the \real world"

distribution. Let �S denote the \real world" probability
that a transaction contains a given itemset S. Thus, the

number of transactions NS in the sample (i.e., dataset)

that contain S is a binomial random variable with suc-

cess probability � = �S and n trials.

Hypothesis testing and minimum support. The

minimum support requirement can be cast in the hy-

potheses testing framework as follows. For example,

suppose our minimum support requirement is 10%. For

each itemset S, let HS
0 be the null hypothesis that

�S = 0:1, and let us test it against the alternative hy-

pothesis H1
S that �S > 0:1. Let pS be the fraction of

transactions in the dataset that contain S. The test is

to compare pS with a threshold value p0 and reject HS
0

if and only if pS � p0. There are two kinds of possible
errors (Cryer & Miller 1994):

Truth

Decision HS
0 true HS

1 true
Do not Correct Type II error

reject HS
0 decision

Reject HS
0 Type I error Correct

decision

The selection of p0 is determined by a bound on the

desired probability of Type I error, which is called the

signi�cance level.

P-values. In general, the p-value of a test result is the

probability of getting an outcome at least as extreme as

the outcome actually observed; the p-value is computed

under the assumption that the null hypothesis is true

(Cryer & Miller 1994). In our example, the p-value

corresponding to an observed fraction pS is equal to the

probability, under the assumption that �S = 0:1, that

the fraction of transactions that contain S is greater

than or equal to pS .

In order to compute the p-value, we use either the

normal approximation, the Poisson approximation, or

the exact binomial distribution, depending on the ac-

tual values of n, the minimum support requirement,

and the observed support. For example, suppose n =

10; 000, the minimum support is � = 0:1 and the ob-

served support is p = 0:109. We use the normal ap-

proximation. The mean is � = 0:1, and the standard

deviation is
p
(�(1 � �)=n) =

p
(0:09=10000) = 0:003.

Since p is three standard deviations greater than �, the

p-value is 0.0013.

Testing Independence. Consider an association

rule S ) T , where S and T are sets of items. As a null

hypothesis we assume that S and T occur in transac-

tions independently. Thus, under the null hypothesis,3

�S^T = �S � �T . As an alternative hypothesis, we can

use the inequality �S^T > �S � �T , which means that

the conditional probability of T given S is greater than

the probability of T .

If the values �S and �T are assumed to be known

with su�cient accuracy, we can use the value �S��T to

compute a p-value for S ) T . This p-value corresponds

to the probability, under the assumption that S and T

are independent, that the empirical frequency of the

set S [ T will be greater than pS^T . Since we don't

know the actual values of �S and �T , we use pS and

3We denote the event that S[T is included in the trans-
action by S ^ T since this is indeed the intersection of the
events corresponding to S and T .



pT (the fractions of transactions that contain S and T ,
respectively) as estimates for �S and �T . The lower

the p-value, the more likely it is that S and T are not

independent.

2.2. Statistical Signi�cance of a Set of
Associations

Suppose we are testing k null hypotheses H1
0 ; : : : ;H

k
0 ,

and denote by qi the probability of rejecting Hi
0 when

it is true. The probability of rejecting at least one of

the null hypotheses when they are all true is at most

q1 + � � �+ qk. Thus, if we wish the latter to be smaller

than, say, 0:05, it su�ces to determine thresholds for

the individual tests so that qi < 0:05=k. This bound

may be very small if the number of hypotheses im-

plicitly being tested is very large. Indeed, since under

the null hypothesis the empirical p-value is distributed

uniformly, when we test k true null hypotheses whose

test statistics are independent random variables, the

expected value of the smallest p-value is 1=(k + 1), so

in order to achieve a small probability of rejecting any

true null hypothesis we would have to choose thresholds

even smaller than that. Note that when we test inde-

pendence of pairs in a set of, say, 10,000 items, then the

value of k would be greater than 107.

Obviously, if we wish to achieve a good probability of

rejecting most \false discoveries", we have to increase

the probability of rejecting some true ones as well. In

other words, when we attempt to discover more true

rules, we also increase the risk of false discoveries (i.e.,

rejecting true null hypotheses). However, we would like

to have an idea how many false discoveries there may

be for any given threshold. We explain below how to

compute an upper bound on the number of hypotheses

that are implicitly tested; this number can be used to

estimate the number of false discoveries for any given

threshold.

Upper Bound on the Number of Hypotheses.

The number of hypotheses that we are implicitly testing

in the associations algorithm is typically much larger

than just the number of frequent itemsets or the num-

ber of rules that are generated. To understand why,

consider the set of frequent pairs. Let the null hypoth-

esis Hij
0 be that the items i and j are independent. To

�nd the set of frequent pairs, the associations algorithm

counts the cross-product of all the frequent items. Sup-

pose there are 100 frequent items. Then there will be

roughly 5000 pairs of items whose support is counted. If

the algorithm throws away 4000 of these at random and

tests Hij
0 only for the remaining 1000 pairs, then only

1000 hypotheses have been tested. On the other hand,
if the algorithm picks the 1000 pairs with the smallest

p-values, then 5000 hypotheses have been tested. If the

algorithm �rst considers the 1000 pairs with the high-

est support, and only then looks at p-values, then the

actual number of hypotheses being tested is not readily

available. In this case, we can use the number 5000 as

an upper bound on the number of hypotheses.

We can extend this upper bound to include itemsets

and rules with more than two items. Consider an item-

set with three frequent items that does not include any

frequent pairs. We do not need to include such an item-

set while counting the number of hypotheses because

this itemset clearly cannot have minimum support (in

the dataset) and hence it's properties are never exam-

ined by the algorithm. Hence for itemsets with three

items, the number of hypotheses is less than the prod-

uct of the number of frequent pairs times the number of

frequent items. In fact, we can further bound the num-

ber of hypotheses to just those itemsets all of whose

subsets are frequent. This number is exactly the num-

ber of candidates counted by current algorithms. By

summing this over all the passes, we get

Number of Hypotheses

� Number of Candidate Itemsets

� Number of Frequent Itemsets � Number

of Frequent Items.

where the set of candidate itemsets includes any item-

set all of whose subsets are frequent. We emphasize

that this is only an upper bound and may be much

higher than necessary. Another serious problem is that

even when all the null hypotheses are true, their test

statistics are clearly not independent, thus prohibiting

a direct calculation of appropriate thresholds. Below

we present a practical solution to this problem.

2.3. Determining thresholds by resampling

Given the observed singleton frequencies pi of the items,

we generate a few synthetic data sets of transactions

under a model where the occurrences of all the items

are independent. Thus, the transactions are generated

independently; for each transaction j and for item i we

pick a number xij from a uniform distribution over [0; 1]

and include i in j if and only if xij < pi. Typically, we

would generate 9 data sets, each consisting of 10; 000

transactions. These numbers depend on the number

of frequent items and minimum support rather than

the number of transactions. We run the association

rules algorithms on these data sets. Let vij denote the

ith smallest p-value in dataset j. Let Vi denote the



Dataset Supermarket Dept. Store Mail Order
Number of Customers 6200 Unknown 214,000
Number of Transactions 1.5 million 570,000 3 million
Items per Transaction 9.6 4.4 2.6
Min. Support (for exp.) 2% 1% 0.02%
Min. Conf (for exp.) 25% 25% 25%
# Frequent Items 201 283 2849
# Frequent Itemsets4 2541 943 10,173
# Candidates 30,000 42,000 4,090,000
# Rules 4828 1020 2479

Table 1: Dataset Characteristics

mean of the values vi1; vi2; : : : The value Vi estimates

the expectation of the ith smallest p-value when all the

null hypotheses are true. So, we expect at most i false

discoveries when we place the threshold at Vi. These

estimates become useful when we wish to assess the

quality of the set of rules we mine from the real data

set. For example, if in the real data set we consider

reporting all the rules with p-values smaller than some

threshold t, and if Vi < t � Vi+1, then we expect no

more than i of these rules to be false discoveries, since

even in a purely synthetic data base where all the null

hypotheses are true, no more than an expected number

of i turn out to have such small p-values. As the value of

t increases, more rules would be reported, but a larger

number of them is expected to be false.

We tried this approach on three real-life datasets,

whose characteristics are shown in Table 1. We present

results for a speci�c minimum support and con�dence

for each rule; we got similar results for other values of

support and con�dence. Table 2 gives for each dataset

the results of the simulation. We present results with

three di�erent random seeds to give an idea of the vari-

ation in p-values. For the supermarket and department

store data, we also ran with three di�erent data sizes:

1000, 10,000 and 100,000 transactions.5 Notice that

the average p-values are quite similar for the three data

sizes.

We estimated the smallest p-value for each dataset

based on the conservative upper bound on the number

of hypotheses that we derived in the previous section.

There was more than a factor of 100 di�erence between

the expected lowest p-value and the actual least p-value

on all three datasets.

For the Supermarket data, only two rules (out of 4828

rules) had p-values higher than 10�9: their p-values

5For the mail order data, the minimum support was too
low to get meaningful results with the �rst two data sizes.
With 10,000 transactions, minimum support corresponds to
just 2 transactions.

were .0037 and .0051. For the Department Store data,

only nine rules (out of 1020 rules) had p-values higher

than 10�100, and all their p-values were greater than

0.09. For the Mail Order data, none of the rules (out

of 2479 rules) had p-values greater than 10�40. Hence

the number of \false discoveries" was extremely small.

The reason for the extremely low number of false dis-

coveries is that the support and con�dence threshold al-

ready do an excellent job of pruning out most rules that

are not statistically signi�cant. For instance, consider

a rule where the support of the consequent is 5%. For
this rule to meet the minimum con�dence constraint,

the support (con�dence) of this rule must be at least 5

times the expected support (con�dence) assuming that

the antecedent and consequent are independent. Hence,

unless the minimum support was extremely low, this

rule would have a very low p-value.

2.4. Con�dence Intervals

Denote by B(k;n; s) the probability that a binomial

random variable with success probability s and n tri-

als will have a value greater than k. The p-value of a

rule with observed frequency p, with respect to a de-
sired support level of s is equal to B(np;n; s). Let �

denote the true frequency. The probability of the event

�� x � p � �+ y is the same as the con�dence level of

an interval of the form [p� y; p+ x]. The symmetry of

the normal approximation allows calculating con�dence

intervals based on the observed value p. If we construct

for each rule a con�dence interval of level 95%, then for

each rule there is an apriori probability of 95% that the

true frequency lies within the interval. This means that

the expected proportion of the rules where the true fre-

quency lies within the respective interval is 95%. With

regard to constructing a con�dence interval for the con-

�dence of a rule, we can argue the following. In gen-

eral, consider events E1 � E2. If [a; b] and [c; d] are

con�dence intervals of level 1� � for �(E1) and �(E2),

respectively, and if c > 0, then [a=d; b=c] is a con�dence



Simulated Number of Expected Lowest Lowest Next Lowest
Dataset Transactions p-value p-value p-value

1,000 .0026, .0048, .0072 .0038, .0074, .0089
Supermarket 10,000 3e-5 .0030, .0044, .0064 .0049, .0110, .0140

100,000 .0011, .0022, .0086 .0049, .0055, .0096
1,000 3e-5, .0025, .0025 .0010, .0027, .0029

Dept. Store 10,000 2e-5 .0013, .0025, .0032 .0032, .0040, .0090
100,000 .0002, .0021, .0045 .0006, .0022, .0090

Mail Order 100,000 2e-7 2e-5, 6e-5, .0002 7e-5, 8e-5, .0003

Table 2: Simulation Results

interval for p(E1jE2) with con�dence level of at least

1� 2�.

These con�dence intervals allow users to use associ-

ations rules predictively by giving them an idea of how

much variance they can expect in the support and con-

�dence of a rule in the future.

3. Conclusions

We looked at the issue of whether association rule algo-

rithms produce many \false discoveries". It is straight-

forward to compute the statistical signi�cance of a sin-

gle rule. However, when looking at a set of rules, the

signi�cance test has to take into account the number

of hypotheses being tested. We showed that the num-

ber of hypotheses implicitly being tested can be much

greater than the number of output rules, and derived

an upper bound for the number of hypotheses. Unfor-

tunately deriving an acceptance threshold for the sta-

tistical signi�cance test from this bound may be too

conservative. We presented a novel approach of using

resampling to determine the acceptance threshold for

the signi�cance test. The threshold value derived using
this approach was typically more than 100 times greater

than the threshold value derived from the upper bound.

We then used this threshold to evaluate the number of

\false discoveries" on three real-life dataset. We found

that less than 0.1% of the rules were false discoveries:

the reason for this surprisingly low number is that the

minimum support and con�dence constraints already

do an excellent job of pruning away the statistically

insigni�cant rules. A bonus of this work is that the

statistical signi�cance measures we compute are a good

basis for ordering the rules for presentation to users,

since they correspond to the statistical \surprise" of

the rule.

Finally, we derived con�dence intervals for the sup-

port and con�dence of an association rule, enabling

users to use the rule predictively over future data.
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