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ABSTRACT
There has been considerable work on user browsing mod-
els for search engine results, both organic and sponsored.
The click-through rate (CTR) of a result is the product of
the probability of examination (will the user look at the re-
sult) times the perceived relevance of the result (probability
of a click given examination). Past papers have assumed
that when the CTR of a result varies based on the pattern
of clicks in prior positions, this variation is solely due to
changes in the probability of examination.

We show that, for sponsored search results, a substantial
portion of the change in CTR when conditioned on prior
clicks is in fact due to a change in the relevance of results for
that query instance, not just due to a change in the prob-
ability of examination. We then propose three new user
browsing models, which attribute CTR changes solely to
changes in relevance, solely to changes in examination (with
an enhanced model of user behavior), or to both changes
in relevance and examination. The model that attributes
all the CTR change to relevance yields substantially better
predictors of CTR than models that attribute all the change
to examination, and does only slightly worse than the model
that attributes CTR change to both relevance and exami-
nation. For predicting relevance, the model that attributes
all the CTR change to relevance again does better than the
model that attributes the change to examination. Surpris-
ingly, we also find that one model might do better than an-
other in predicting CTR, but worse in predicting relevance.
Thus it is essential to evaluate user browsing models with
respect to accuracy in predicting relevance, not just CTR.

Categories and Subject Descriptors
H.3.3 [Information Storage And Retrieval]: Informa-
tion Search and Retrieval

General Terms
Algorithms, Experimentation, Human Factors
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1. INTRODUCTION
Web search engines have become an essential tool for nav-

igating the vast amounts of information on the internet. Im-
plicit user feedback, specifically, click-through data, is valu-
able for optimizing search engine results [2, 10, 14]. Click-
through data plays an equally important role in estimating
the quality of sponsored search results [15].

Any attempt at using click-through data for search or
sponsored search runs into the following issue: Eye-tracking
studies show that people tend to scan the search results in
order [3, 11]. However, they are likely to click on a result as
soon as they find one that they consider helpful, and if that
result provides a sufficiently helpful answer, may not look
at other results. This causes position bias: the same result
will get a higher click-through rate (CTR) if it is positioned
towards the top of the page (versus the bottom).

Thus algorithms that use click-through data have to take
position bias into account. Initial work on estimating posi-
tion bias modeled CTR as the product of perceived relevance
(probability of a click given that the user examined the re-
sult) times the probability of examination (probability that
the user would examine this specific position) [15]. The ex-
amination probability was estimated by looking at the CTR
of the same result in different positions.

Subsequently, there have been many papers on better esti-
mating the probability of examination by using the pattern
of clicks on prior results [5, 7, 9, 12], or using both prior
clicks and the relevance of prior results [4, 8, 18]. We discuss
this work in detail in Section 2. The key point is that all of
these papers assume that if CTR changes when conditioned
on the pattern of clicks on prior results, the change in CTR
is solely due to changes in the probability of examination.

Consider a query such as “Canon S90”. The user could be
planning to buy the camera immediately, in which case the
sponsored results are highly relevant. On the other hand,
if the user is just starting to learn about the camera, the
sponsored results will be much less relevant. Thus a click on
the first sponsored result is a signal that the other sponsored
results are also relevant.

Say we now partition the query instances corresponding
to the query“Canon S90” into two sets based on whether the
first result got a click: the “click” and “no-click” sets. The
second result will be highly relevant for the query instances
in the“click” set, and less relevant for the“no-click” set, even
though the query and result are the same. Thus the second
result will have higher CTR in the “click” set than in the
“no-click” set. However, current user models assume that
the relevance is the same in both the “click” and “no-click”



sets, and that all the difference in CTR for the second result
is because users in the“click”set were more likely to examine
the second result than users in the “no-click” set.

Contributions.
In this paper, we examine the implications of the above

insight. In Section 3, we show that, for sponsored search
results, an increase in relevance is indeed responsible for a
substantial portion of the increase in CTR when conditioned
on prior clicks. We then propose three new user browsing
models in Section 4, which attribute CTR changes solely to
changes in relevance, solely to changes in examination (with
an enhanced model of user behavior), or to both changes
in relevance and examination. We evaluate the accuracy
of these models when predicting CTR in Section 5, and the
accuracy when predicting relevance in Section 6. Our results
show that, surprisingly, one model might do better than
another in predicting CTR but worse in predicting relevance.
We conclude with a summary of our results and directions
for future work in Section 7.

2. BACKGROUND
Prior user browsing models for web search results can be

partitioned into three groups based on how they estimate
the probability that the user examines a specific position:

• Models that assume examination is independent of the
other results for the query.

• Models that assume examination depends on the pat-
tern of clicks on prior results.

• Models that assume examination depends on both the
pattern of clicks on prior results, and the relevance of
prior results.

Some of the models were originally targeted at sponsored
search, while others were targeted at organic search results.
However, while the parameter values might differ, all of these
models are general enough to apply to both organic search
and sponsored search.

2.1 Examination independent of other results
We use the following notation:

• Let φ(i) denote the result at position i in a ranked
list of results (whether organic results or sponsored
results).

• Let Ci denote a binary random variable that captures
the event that a user clicks on φ(i).

• Let Ei denote the event that the user examines φ(i).

The examination hypothesis, originally proposed by
Richardson et al. [15] and formalized by Craswell et al. [5],
observes that to be clicked, a result must be both examined
and relevant:

Pr(Ci = 1) = Pr(Ci = 1|Ei = 1) Pr(Ei = 1). (1)

Richardson et al. [15] assume that the probability a result
is viewed depends solely on its position, and is independent
of other results.

We call the statistical model that derives from the exam-
ination hypothesis the baseline model:

Pr(Ci = 1) = rφ(i) αi, (2)

where

• rφ(i) = Pr(Ci = 1|Ei = 1) represents the relevance of
the result in position i, and

• αi = Pr(Ei = 1) models the position bias.

Richardson et al. [15] proposed estimating the αi param-
eters by presenting users with the same result at different
positions and observing the change in CTR.

2.2 Examination depends on prior clicks
An implicit assumption in the above formulation is that

the probability of examining the result in position i does not
depend on click events in other result positions. A plethora
of recent papers explore models that incorporate this infor-
mation into the examination probabilities.

The cascade hypothesis [5] assumes that users scan each
result sequentially without any skips:

Pr(E1 = 1) = 1,

Pr(Ei = 1|Ei−1 = 0) = 0.

The cascade model [5] further constrains that the user
continues examining results until she clicks on a result, and
does not examine any additional results after the click:

Pr(Ei = 1|Ei−1 = 1) = 1− Ci−1 (3)

This model is quite restrictive since it allows at most one
click per query instance.

The dependent click model (DCM) [9] generalizes the
cascade model to instances with multiple clicks:

Pr(Ei = 1|Ei−1 = 1, Ci−1 = 1) = λi,

Pr(Ei = 1|Ei−1 = 1, Ci−1 = 0) = 1.

The authors suggest estimating the position effects λi using
maximum likelihood.

The user browsing model (UBM) [7] is also based on
the examination hypothesis, but unlike the cascade model
and DCM, does not force Pr(Ei = 1|Ei−1 = 1, Ci−1 = 0)
to be 1. In other words, it allows users to stop brows-
ing the current results and instead reformulate the query
(or perhaps give up). UBM assumes that the examination
probability is determined by the preceding click position
p(i) = argmaxl<i{Cl = 1}:

Pr(E1) = α1

Pr(Ei = 1|C1:i−1) = αi βi,p(i), (4)

where αi = Pr(Ei = 1) is the examination probability of po-
sition i without taking other click information into account
(just as in the baseline model), and βi,p(i) denotes the cor-

rection factor over αi given p(i) = argmaxl<i{Cl = 1}.1 To
avoid confusion between the above “user browsing model” in
Equation 4, and the category of user browsing models, we
will refer to this specific model as UBM.

The bayesian browsing model (BBM) [12] uses exactly
the same browsing model as UBM. However, BBM adopts
a Bayesian paradigm for relevance, i.e., BBM considers rel-
evance to be a random variable with a probability distri-
bution, rather than a fixed (but unknown) value to be esti-
mated. In the context of this paper, where we are focused on
the user browsing model, UBM and BBM can be considered
equivalent.

1Note that our notation is slightly different than that in [7].
We consider β to be a correction factor on α, while they
used β for the product of our definitions of α and β.



2.3 Examination depends on prior clicks and
prior relevance

Next, we summarize models that take into account both
clicks on prior results, and the relevance of those results, to
predict the probability of examination.

The click chain model (CCM) [8] is a generalization of
DCM obtained by parameterizing λi and by allowing the
user to abandon examination of more results:

Pr(Ei = 1|Ei−1 = 1, Ci−1 = 0) = α1

Pr(Ei = 1|Ei−1 = 1, Ci−1 = 1) = α2(1− rφ(i−1)) + α3rφ(i−1).

Thus if a user clicks on the previous result, the probability
that they go on to examine more results ranges between α2

and α3 depending on the relevance of the previous result.
The general click model (GCM) [18] treats all relevance

and examination effects in the model as random variables:

Pr(Ei = 1|Ei−1 = 1, Ci−1 = 0) = Π(Ai > 0)

Pr(Ei = 1|Ei−1 = 1, Ci−1 = 1) = Π(Bi > 0)

Pr(Ci = 1|Ei) = Π(rφ(i) > 0).

This allows online inference within the cascade family. These
authors show that all previous models are special cases by
suitable choice of the random variables Ai, Bi, and rφ(i).

2.4 Post-click models
In our discussion so far, relevance referred to “perceived”

relevance – whether the user considers the result relevant
before she clicks on the result. Post-click relevance is a mea-
sure of whether the user was satisfied with their experience
after clicking on the result. Perceived relevance is positively
correlated with post-click relevance [16]. However, there are
cases where perceived relevance is high and post-click rele-
vance is low (e.g., snippet or creative is inaccurate), or vice
versa (e.g., only a small fraction of people searching “ya-
hoo” want answers.yahoo.com – but for those people, it’s
perfect). Thus both perceived and post-click relevance are
equally important for user satisfaction.

The dynamic bayesian model (DBM) [4] uses the “user
satisfaction” (post-click relevance) of the preceding click to
predict whether the user will continue examining additional
results:

Pr(Ei = 1|Ei−1 = 1, Ci−1 = 0) = γ

Pr(Ei = 1|Ei−1 = 1, Ci−1 = 1) = γ(1− sφ(i−1)),

where sφ(i−1) is the satisfaction of the user in the previous
clicked result. They propose an EM-type estimation method
to estimate γ and the user satisfaction variables.

The session utility model (SUM) [6] proposes a user
browsing model based on the “intrinsic” (post-click) rele-
vance of the sequence of clicked results in a user session.
However, it does not model examination or pre-click rele-
vance.

Our focus in this paper is on correctly estimating exam-
ination and perceived relevance. Thus in the rest of the
paper, we will use “relevance” as shorthand for “perceived
relevance”, and focus on the models in Sections 2.1 and 2.2.
We will briefly revisit the other models when we discuss fu-
ture work in Section 7.

3. CONSTANT RELEVANCE ASSUMPTION

3.1 Instance relevance
There is an implicit assumption underlying the models in

Sections 2.1, 2.2 and 2.3:

Constant Relevance Assumption: The rel-
evance of a result to a query is constant across
query instances.

More formally, these models assume that the perceived rel-
evance, Pr(Ci = 1|Ei = 1), of a result is independent of the
pattern of clicks on prior results:

Pr(Ci = 1|Ei = 1, C1:i−1) = Pr(Ci = 1|Ei = 1)

The constant relevance assumption may appear quite rea-
sonable at first glance: Isn’t the relevance of the result sim-
ply dependent on the query and the result? However, “rele-
vance” can have two very different meanings:2

• aggregate relevance: the relevance of a result for a
query, averaged over all instances of the query, or

• instance relevance: the relevance of a result for the
current query instance.

Aggregate relevance depends only on the query and result
– precisely the intuition behind the constant relevance as-
sumption. However, Pr(Ci = 1|Ei = 1, C1:i−1) corresponds
to instance relevance (i.e., relevance for the current query
instance), not aggregate relevance. It is easy to make a case
that C1:i−1 is in fact a predictor of instance relevance, espe-
cially for sponsored search results.

The key intuition is that the query string does not fully
capture user intent. Consider a query “Canon T2i”. Some
subset of users who issue this query will be interested in
buying a camera at the time they issued the query, and
sponsored search results will be highly relevant to them.
Other users may be potentially interested in buying a cam-
era at some point in the future, but are currently primarily
interested in learning more about the camera. The spon-
sored results will be much less relevant to these users. Thus
for queries with multiple user intents, often only one (or a
subset) of these intents is represented by sponsored search
results. For such queries, Pr(Ci = 1|Ei = 1) for a query
instance will be strongly correlated with Pr(Cj = 1|Ej = 1)
for the same query instance, where positions i and j both
correspond to sponsored results.3

3.2 Testing the constant relevance assumption
Assume that for some position, we can get a set of query

instances where we know the probability of examination is
close to 1, i.e., the user examined the position with high
probability. Given such a set, it would be easy to test
whether the constant relevance assumption is valid. If CTR
is independent of the pattern of clicks on other positions,
then the assumption is true. If CTR increases as the number
of clicks on other positions increases, then the assumption
is false, since the CTR change must be solely due to change
in instance relevance.

2If one also considers post-click relevance, “relevance” has
four distinct meanings: post-click versus pre-click, and ag-
gregate versus instance relevance.
3The fact that query reformulations are common suggests
that similar correlations may also exist among organic search
results.



Figure 1: Distribution of the difference in positions
between temporally adjacent clicks.

We now show that there is indeed a way get such a subset
of query instances. If users scan results linearly from top
to bottom, and there is a click at position i, then the user
must have examined the results at positions 1 through i−1.
We show next that users indeed scan linearly from top to
bottom.

3.2.1 Linear scan from top to bottom
There is evidence from eye-tracking studies [3, 11] that

users scan results linearly from top to bottom. The user
browsing models in Sections 2.2 and 2.3 also assume linear
scan.

However, there have also been eye-tracking studies show-
ing that rather than a simple linear scan, users do page
chunking. They partition the page into chunks, select the
chunk they want to examine, and then scan items in that
chunk in a linear fashion [1]. Hence we first do some due
diligence to see whether the data supports the linear scan
assumption.

Formally, we would like to assume that a click at position
i implies that the user examined all preceding positions with
probability close to 1:

Ci = 1 =⇒ Pr(Ej = 1) ≥ (1− ε), ∀j < i. (5)

Figure 1 shows the distribution of temporally adjacent
pairs of clicks as a function of their positional distance,
over all sponsored search results. A negative distance corre-
sponds to pairs of adjacent clicks where the user clicks are
linear scan order (i.e., top to bottom), while a positive dis-
tance corresponds to bottom to top order. The gap at 0
simply means that users typically do not have consecutive
clicks on the same result.

Only around 5% of temporally adjacent click pairs are
both not in linear scan order and have a gap greater than
2. Even in these cases, it’s possible that the user scanned
linearly and then went back to an earlier result, e.g., when
comparison shopping. Thus Equation 5 appears to be a rea-
sonable basis for testing the constant relevance assumption.

3.2.2 The data speaks
Now that we have a set of queries and positions where

Figure 2: Testing the constant relevance assump-
tion.

Pr(Ei = 1) is close to 1, we can look at whether relevance
changes when conditioned on the pattern of other clicks for
that query instance.

We first introduce some notation. Let s(i) equal 1 iff there
was a click below position i, i.e., the set {j|j > i, Cj = 1}
is non-empty. Let p′(i) equal 1 if there was a click above
position i, and 0 otherwise. Equation 5 implies that if the
constant relevance assumption is true, we would expect:

Pr(Ci = 1|p′(i) = 1, s(i) = 1) = Pr(Ci = 1|p′(i) = 0, s(i) = 1)

This follows from the fact when s(i) = 1, Pr(Ei = 1) ≈ 1,
and the constant relevance assumption implies that rele-
vance is also fixed, so

Pr(Ci = 1|p′(i) = 1, Ei = 1) = Pr(Ci = 1|Ei = 1)

= Pr(Ci = 1|p′(i) = 0, Ei = 1)

Let Qi(j) denote, for some specific query and result, the
subset of query instances where s(i) = 1 and p′(i) = j. If
the CTR is different when conditioned on p′(i), i.e.,P

q∈Qi(1)
CiP

q∈Qi(1)
1
6=

P
q∈Qi(0)

CiP
q∈Qi(0)

1

and the difference is statistically significant, we would have
disproved the constant relevance assumption.

To increase the power of the statistical test, we extend the
above test to multiple queries and results, within a single
configuration and position. Let Ti(j) denote, for a specific
configuration, the set of query instances where s(i) = 1 and
p′(i) = j. Since there may be small differences in the mix of
queries and results between Ti(0) and Ti(1), we change the
denominator to be the expected clicks, rather than impres-
sions. Let Li(j) be defined as:

Li(j) =

P
q∈Ti(j)

CiP
q∈Ti(j)

Pr(Ci = 1|Ei = 1)

The numerator is the observed number of clicks, i.e., the sum
of the observed relevance. The denominator is the sum of
the expected relevance. The constant relevance assumption
implies that the ratio of the observed to the expected rele-
vance should be independent of p′(i). Hence if the constant



relevance assumption is true, and any errors in relevance es-
timates are approximately equal in both sets, Li(1) should
be roughly equal to Li(0).

We present results for the 3-8 configuration (3 top results,
8 rhs results) in Figure 2. Here T2 refers to the second
top result, R3 refers to the third rhs result, etc. The red
line shows the observed value of Li(1)/Li(0) for different
positions, with a 99% confidence interval (± 2.58 standard
deviations). The confidence intervals were estimated by par-
titioning the data into 10 sets and computing variance. The
ratio is quite consistent across positions. The dip at R1 is
because users typically scan the top sponsored results first,
then the organic search results, and then the rhs sponsored
results. Li(1)/Li(0) is much greater than 1 for all positions,
and the results are statistically significant. This disproves
the constant relevance assumption.

The results are consistent across other configurations. The
weighted average of Li(j)/Li(0) over all configurations and
positions is 2.69, with a 99% confidence interval of ± 0.05.4

4. NEW USER BROWSING MODELS
Having shown that changes in CTR when conditioned

on other clicks are at least partly due to changes in in-
stance relevance, we propose new user browsing models that
take advantage of this insight. Our first model, pure rele-
vance, is a strawman that assumes that CTR changes are
solely due to changes in instance relevance, and not due to
changes in examination. (However, as we will see later, this
strawman does surprisingly well.) Our second model, max-
examination, assumes (like prior work) that CTR changes
are solely due to changes in examination – but uses addi-
tional information to better predict whether the user ex-
amined the result. Our third model, JRE generalizes both
these models, and allows CTR changes to be caused by both
changes in examination and instance relevance.

4.1 Pure relevance model
The pure relevance model assumes that any changes in the

probability of a click due to conditioning on prior clicks is
caused solely by change in the expected instance relevance of
the result. Thus the probability of examination is assumed
to be independent of clicks on other results:

Pr(Ei = 1|C 6=i) = Pr(Ei = 1) = αi,

where C 6=i is the pattern of clicks in all positions except i,
i.e., C 6=i = C1:i−1,i+1:m where m is the number of positions.
The model then assumes that the changes in instance rele-
vance can be estimated using the total number of clicks in
other positions:

Pr(Ci = 1|C 6=i, Ei = 1) = rφ(i) δη(i) (6)

where

• η(i) =
P
k 6=i Ck is the total number of clicks in posi-

tions other than i,

• δη(i) is the correction factor to get the expected in-
stance relevance (for the result in position i) when
conditioned on C 6=i.

4The weight for a given configuration and position is
min(

P
q∈Ti(0)

Ci,
P
q∈Ti(1)

Ci).

Thus rφ(i) is the aggregate relevance, while rφ(i)δη(i) is the
estimated instance relevance after conditioning on C 6=i. The
pure relevance model is then defined by

Pr(Ci = 1|C6=i) = Pr(Ei = 1) Pr(Ci = 1|C 6=i, Ei = 1)

= αi rφ(i) δη(i). (7)

Pure Relevance versus Baseline.
While the pure relevance and baseline models will yield

different CTR estimates for any query instance, they will in
fact yield identical relevance estimates rφ(i). For any result,
both pure relevance and baseline have the same probability
of examination. Since rφ(i) =

P
Cφ(i)/

P
Eφ(i), and clicks

and examination are the same, the relevance estimate must
also be the same.

4.2 Max-examination
Recall from Equation 5 that if there is a click on a position

below i, then there is a high probability that position i was
examined. So, if we include information about clicks below
position i while estimating the probability of examination,
the model should have significantly more information than
models (like UBM/BBM) that only consider clicks above
position i.

With the above intuition in mind, we propose the max-
examination model. As before, let p(i) be the position of
the preceding click. Let s(i) be 0 if there is no click below
position i and 1 if there is a click below i. We define e(i):

e(i) =

(
p(i) if s(i) = 0

i+ 1 if s(i) = 1.

We then replace the p(i) used in the UBM model (Equa-
tion 4) with e(i), and thereby incorporate the case when the
click occurred below i. To avoid confusion, we also change
the notation to γi,e(i) instead of βi,p(i). This yields the fol-
lowing equations for the max-examination model:

Pr(Ei = 1|C 6=i) = αiγi,e(i) (8)

Pr(Ci = 1|C 6=i) = αiγi,e(i)rφ(i) (9)

4.3 Joint relevance examination model (JRE)
A natural generalization of the pure relevance and max-

examination models is to combine their features, and allow
CTR changes to be caused by both changes in examina-
tion and changes in instance relevance. We call this the
joint relevance examination (JRE) model. We combine the
relevance component from the pure relevance model (Equa-
tion 6), with the examination component from the max-
examination model (Equation 8), to get

Pr(Ci = 1|C6=i)
= Pr(Ei = 1|C 6=i) Pr(Ci = 1|C 6=i, Ei = 1)

= αi γi,e(i) rφ(i) δη(i). (10)

Note that an estimate of γi,e(i) in the JRE model will
not be the same as the corresponding value in the max-
examination model, since the credit is shared between γ and
δ. For the same reason, an estimate of δη(i) will be different
in the JRE model and the pure relevance model.

Conceptually, there is a single “true” value of aggregate
relevance, rφ(i). However, different models may yield differ-
ent estimates of rφ(i) – we will explore this issue further in
Section 6.



Diversity of results.
In the pure relevance and JRE models, we implicitly as-

sume that the set of results are homogeneous, and therefore
a click on one result would likely be a good predictor of
clicks on other results. However, it is easy to come up with
scenarios where the results are diverse, e.g., for the query
“jaguar”, one would expect a positive correlation between
clicks on results about the car, or between clicks on results
about the animal, but a negative correlation between clicks
on a car result and clicks on an animal result.

Instance relevance may also be different between top and
rhs sponsored search results, even when both sets of results
are on the same topic. Users typically scan top sponsored
links before organic results, while they scan rhs sponsored
links after organic results. Therefore the top results may be
relevant, while the rhs results may be less relevant if the top
or organic results were sufficient to answer the query.

Fortunately, given a partitioning of the results into (ap-
proximately) homogeneous groups, it is trivial to update
the pure relevance and JRE models. The only change is
that η(i), rather than being the number of clicks on other
results, becomes the number of clicks on other results in the
same group.

5. PREDICTING CTR
We showed in Section 3.2.2 that the constant relevance as-

sumption was incorrect. We now evaluate which user brows-
ing models best predict CTR in offline analysis: models that
attribute CTR changes solely to examination, solely to in-
stance relevance, or to both examination and instance rele-
vance?

We compare the three models proposed in Section 4 to
two of the user browsing models from prior work:

• UBM [7] (or equivalently, BBM), which is the most
general (powerful) of the models in Section 2.2,

• the baseline which does not use co-click information
(Equation 2), but yields identical relevance estimates
as the pure relevance model.

We describe how we fit the parameters in the models in 5.1,
followed by experimental results in Section 5.2.

5.1 Methodology

Baseline.
To evaluate the user browsing models for predicting CTR,

we need to combine them with a machine learning system for
predicting relevance. We used Google’s production system
for predicting relevance of sponsored links for both the ma-
chine learning and user browsing components of the baseline
model. The user browsing model in Google’s system does
not make use of co-click information, and is thus similar
to the baseline model (Equation 2). The machine learning
model for predicting relevance uses the query, the position
bias for the position in which the result appeared, whether
the result was clicked, and various features of the query and
the sponsored result to predict relevance.

Other Models.
Our baseline model is sufficiently complex that, if we di-

rectly add a new feature (such as a different user browsing
model), it’s not possible to isolate the accuracy gains from
the new feature, versus the new feature shifting the model

to a different local optimum. To get a fair comparison, we
use the output of the baseline model (αirφ(i)) as a given,
and separately optimize the co-click dependent parameters.

The input data for these models was a 10% sample, over a
week, of the logged predicted CTR (αirφ(i)) from the base-
line model, along with co-click information. We used a 50-50
split of the data into training and testing.

For each model, we fit parameters separately for each con-
figuration (number of top and rhs sponsored results) and
position. To keep the notation simple, we will express the
model for position j without reference to the configuration.
We next describe how we estimate the parameters for each
model.

UBM/BBM.
We estimate the βi,p(i) parameters in UBM/BBM (Equa-

tion 4), where p(i) represents the position of the preceding
click (if any) above position i, using:

βi,k =

P
p(i)=k CiP

p(i)=k αirφ(i)

The numerator corresponds to the total number of clicks
at position i for query instances where p(i) = k, while the
denominator corresponds to the expected number of clicks
(without including βi,k). Thus βi,k is set to the value where
the number of clicks predicted by UBM (

P
p(i)=k αiβi,krφ(i))

equals the observed number of clicks.

Max Examination.
The methodology for estimating γi,e(i) is similar, we again

equalize the predicted and observed number of clicks:

γi,k =

P
e(i)=k CiP

e(i)=k αirφ(i)

Pure Relevance.
For the pure relevance model from Section 4.1, we simi-

larly estimate δi,ηi using:

δi,k =

P
η(i)=k CiP

η(i)=k αirφ(i)

As we discussed in Section 4.3, the top and rhs sponsored
results are sufficiently diverse that clicks on the top are not
necessarily a signal of instance relevance for the rhs (and
vice versa). Thus we restrict η(i) to be the number of clicks
at other position in the same slot, i.e., the number of other
top clicks for top sponsored results, and the number of other
rhs clicks for rhs sponsored results.

JRE.
For JRE, we need to estimate two parameters, γi,e(i) and

δi,η(i), hence we use iterative fitting. We initialize all the
γ and δ parameters to 1.0. We then repeatedly re-estimate
the parameters using:

γi,k =

P
e(i)=k CiP

e(i)=k αirφ(i)δi,η(i)

δi,k =

P
η(i)=k CiP

η(i)=k αirφ(i)γi,e(i)

The results are not sensitive to the algorithm for fitting the



parameters – the relative accuracy of the models was similar
when we tried logistic regression (after mapping the models
to odds space).5

5.2 Results
Figure 3 shows the results for the 3-8 configuration (3 top

sponsored results, 8 rhs sponsored results), for three dif-
ferent accuracy metrics: log-likelihood, squared error, and
absolute error. The y-axis shows improvements in the met-
ric relative to the baseline model for the various positions
in this configuration (shown on the x-axis). As before, T1
represents the first top result, R3 the third rhs result, etc.

First, note that there is a clear ordering, consistent across
all metrics, between the models: JRE ≥ pure relevance >
max-examination > UBM/BBM > baseline.

Consistent with prior work, UBM/BBM does significant
better than baseline, by leveraging co-click information. In-
terestingly, max-examination does significantly better than
UBM.6 The difference is highest for the first rhs position
R1. Top clicks are not a strong predictor of examination
for the rhs, while a click below R1 is a strong predictor of
examination.

Pure relevance does slightly better than max-examination
wrt log-likelihood, and substantially better wrt the other
metrics. Surprisingly, JRE does only slightly better than
pure relevance. Together, these results suggest that changes
in instance relevance are probably responsible the majority
of the changes in CTR (when conditioned on other clicks),
with the caveat that the examination and relevance features
are correlated (not clearly separable).

Figure 4 shows the overall percentage improvement across
all configurations and positions, with 99% confidence inter-
vals (2.58 standard deviations) computed by partitioning the
test data into 10 groups. The relative performance of the
models is consistent with Figure 3. The separations are all
statistically significant, except between relevance and JRE
for the first two metrics.

6. PREDICTING RELEVANCE
Many papers on user browsing models for web search eval-

uate their models solely based on the accuracy of the model
for predicting CTR in offline analysis [4, 7, 8, 9, 12, 18].
Exceptions include [5], who ran live experiments on organic
search results, and [6], who used human ratings of relevance.

Intuitively, one might expect that the model that does
best at predicting CTR (Pr(Ci = 1)) offline will also do
best at predicting relevance (Pr(Ci = 1|Ei = 1)). How-
ever, this is not the case. Consider the results from Sec-

5In the initial version of the paper, we had mapped each
model into the corresponding model in odds space, and used
logistic regression – glm() in package:stats in R – to fit the
parameters. Based on reviewer feedback, we decided to di-
rectly fit the parameters. The results in the initial version
of the paper were almost identical to those presented below,
since CTR for sponsored links is sufficiently less than 1, and
with a small enough range, that effectively odds is a linear
function of probability.
6The only exception is at T3, where max-examination does
slightly worse. Whether there was a click on T1 or T2 is
not purely a predictor of examination, it’s also a predictor
of instance relevance of T3. Our guess is that, for T3, the
instance relevance component of this signal is more impor-
tant than the increase in probability of examination due to
the user clicking on a rhs result.

(a) Log likelihood, improvement over baseline.

(b) Squared error, improvement over baseline.

(c) Absolute error, improvement over baseline.

Figure 3: Accuracy for the 3-8 configuration.



Log Squared Absolute
Likelihood Error Error

UBM/BBM 1.82 ± 0.05 0.44 ± 0.03 0.75 ± 0.03
Max-Exam. 2.82 ± 0.07 0.52 ± 0.05 1.11 ± 0.03
Relevance 3.22 ± 0.08 1.16 ± 0.07 1.88 ± 0.04
JRE 3.34 ± 0.09 1.21 ± 0.07 1.98 ± 0.04

Figure 4: Percentage improvement over all configu-
rations, with 99% confidence intervals.

tion 5.2. For predicting CTR, pure relevance dominated
max-examination which dominated baseline. However, base-
line and pure relevance yield identical relevance estimates,
they only differ in the CTR estimates. So if max-examination
is worse than baseline and pure relevance at predicting rel-
evance, then max-examination and baseline are a pair of
models where one is better at CTR and the other at rele-
vance. If max-examination is better than baseline and pure
relevance in predicting relevance, then max-examination and
pure relevance form a similar pair, with one better at CTR
and the other at relevance.

To get intuition on how a model might do better at CTR
but worse at relevance, consider the following example. As-
sume an oracle that outputs 1 if the user clicked, and 0 else.
Consider a browsing model that uses the oracle’s output as
Pr(Ei = 1), the probability of examination. For any result,
Pr(Ei = 1) equals 1 if the user clicked and 0 otherwise, so
we get Pr(Ci = 1|Ei = 1) = 1. Every result has the same
relevance. This model will have perfect accuracy in predict-
ing CTR, but terrible accuracy for relevance. We give a
more realistic example in Appendix A, that shows treating
clicks on other results as predicting examination, when they
are (partly) predicting instance relevance, can be similarly
problematic.

We now present results using live experiments to deter-
mine which of the two models, baseline/pure relevance, and
max-examination are better at predicting relevance. Spon-
sored results are ranked by expected revenue per impression,
i.e, bid × relevance; results with higher expected revenue are
shown in higher positions where they are more likely to be
examined by users. A model that yields more accurate rele-
vance estimates should result in a more accurate ranking of
results, and therefore higher revenue and CTR.

6.1 Methodology
As in Section 5.1, we used Google’s production system

for predicting relevance of sponsored results as the baseline
model. Since we are now evaluating relevance, the produc-
tion system also serves as the pure relevance model (since
pure relevance and baseline have identical relevance esti-
mates).

For the max-examination model, we estimated γi,e(i) from
the logs (separately for each configuration and position), us-
ing the same methodology as in Section 5.1. We can now
use the logged probability of examination (from the base-
line model) and γi,e(i) to get the probability of examination
with the max-examination model. We used Sawzall [13] to
compute, for each sponsored result, the cumulative prob-
ability of examination with both the baseline model and
the max-examination model, over a week of data (without
sampling). Let these values be Eb and Em respectively.
For each result, we multiplied the relevance scores from

the baseline model by Eb/Em to approximate the relevance
scores we would have obtained had we trained a machine
learning model to predict relevance directly using the max-
examination browsing model.7 We selected the 2 million
most significant changes, where significance was defined as
the number of clicks for that result times the change in rel-
evance. This subset covered a substantial majority of the
total significance of all the changes.

We applied these 2 million adjustments to the baseline
model to get a reasonable proxy to the max-examination
model. In particular, the direction of the difference in accu-
racy between this model and the baseline should be the same
as between a trained-from-scratch max-examination model
and the baseline – and what we care about (in this paper)
is not the exact magnitude of the difference in accuracy, but
only about understanding which one is better at predicting
relevance, max-examination or the baseline?

6.2 Results
We ran a live experiment [17] on a small fraction of the

google.com sponsored search traffic, and compared the met-
rics of the baseline and max-examination models. We found
that baseline/pure relevance had better revenue and CTR
than max-examination, with the results being statistically
significant. In our system, changes in revenue and CTR
could also be partly due to other factors, in particular, the
tuning of the function for determining when to show spon-
sored results in the top slot. However, the results remained
consistent through several retunings, thus we are confident
that the results do reflect the accuracy of the models in pre-
dicting relevance.8

Since pure relevance did significantly better than max-
examination at predicting CTR, it is not surprising that pure
relevance also did better at predicting relevance. However,
the results would have been very surprising if we had not
presented the pure relevance model, and treated this solely
as a comparison between the baseline and max-examination.
From that perspective, max-examination does better at pre-
dicting CTR by leveraging co-click information, but because
it incorrectly assigns credit to examination instead of rele-
vance, actually does worse at predicting relevance.

7. CONCLUSIONS
Past work on user browsing models assumed that changes

in CTR when conditioned on clicks in prior positions are due
to changes in probability of examination. We showed that
for sponsored search results, this fundamental assumption
is contradicted by the data. We presented a plausible alter-
nate conjecture: that relevance of the result for that query
instance is strongly correlated with clicks on other results,
and is responsible for a substantial portion of the changes
in conditioned CTR. We proved this conjecture by finding
a subset of query instances where the examination proba-
bility for certain positions is known to be close to 1, and
showing that clicks on prior results still resulted in dramatic
increases in CTR.

7Recall that rφ(i) =
P
Cφ(i)/

P
Eφ(i). So we multiply by

Eb to get Pr(Ci = 1) and then divide by Em.
8At the time we ran the experiments, we expected max-
examination to be more accurate than baseline. Thus we
were highly motivated to get max-examination to work.
This paper came about from our efforts to understand why
we did not succeed!



We came up with new user browsing models that model
changes in CTR (when conditioned on clicks in other posi-
tions) as caused by changes in instance relevance, or both
relevance and examination. We also came up with an en-
hanced version of the UBM model, max-examination, that
leverages information from both prior clicks as well as clicks
below the current position, and predicts CTR better than
the UBM model. Our new model, pure relevance, that at-
tribute changes solely to instance relevance does significantly
better at predicting CTR than the models that attribute
CTR change solely to examination. In fact, the pure rel-
evance model does only slightly worse than the more gen-
eral model that attributes CTR change to both instance
relevance and examination. This implies that changes in
instance relevance account for a substantial portion of the
change in CTR when conditioned on prior clicks.

Finally, we showed that evaluating user browsing mod-
els solely using offline analysis of CTR prediction can be
problematic. A user browsing model may leverage infor-
mation about clicks on other results (or other information
about other results) to get superb accuracy when predicting
CTR offline, but such an analysis cannot reveal whether the
model is also correctly attributing credit between relevance
and examination. If the model incorrectly attributes credit,
it could end up with estimates of relevance and examina-
tion that are not very accurate in isolation, but whose prod-
uct (CTR) is indeed accurate. We demonstrate that this
is not purely theoretical, but indeed an important practical
issue, by comparing the baseline/pure relevance and max-
examination models in live experiments. Although the max-
examination model does much better at CTR prediction in
offline analysis, it does worse than the baseline/pure rele-
vance models in predicting relevance, and therefore worse in
live experiments. This reinforces our earlier conclusion that
relevance is a key driver of changes in CTR when conditioned
on other clicks, and also shows that directly evaluating rel-
evance (through live experiments or human ratings) is an
indispensable part of the evaluation of any user browsing
model.

Future Work.
Our findings open up several directions for future work.
It would be interesting to see whether CTR changes for

organic search results (when conditioned on prior clicks) are
also substantially due to changes in instance relevance.

Quantitatively assigning credit between instance relevance
and examination appears quite difficult. One approach might
be to look at the values of the features corresponding to in-
stance relevance and examination in the JRE model. How-
ever, these features are strongly correlated. Hence we found
that with either iterative fitting or logistic regression, the
values of the features are sensitive to the details of the algo-
rithm and regularization, even though the final predictions
are quite insensitive. Quantitative assignment of credit re-
mains a challenging open problem.

A natural next step would be to generalize the pure rele-
vance and JRE models to incorporate information about the
relevance of prior results (Section 2.3), or the satisfaction of
the user with the prior clicked results (Section 2.4). In par-
ticular, the session utility model [6] is intuitively appealing,
but does not model examination or perceived relevance. A
model that includes the key insights of both JRE and the
session utility model would be very elegant.
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APPENDIX
A. EXAMPLE

We give a concrete example of how UBM (Equation 4)
can be more accurate than the baseline model (Equation 2)
in predicting CTR, but worse in predicting relevance.

Setup.
Assume that all changes in CTR when conditioned on

other clicks are due to changes in instance relevance, not
due to changes in examination. Let there be exactly 2 result
positions, with examination probabilities

Pr(E1 = 1) = α1 = 1

Pr(E2 = 1) = α2 = 0.5

Let the UBM parameters for the second position be:9

β2,p(1)=0 = 0.5

β2,p(1)=1 = 2

We now consider a specific pair of results s1 = φ(1) and
s2 = φ(2), with historical CTR of 0.2 and 0.1 respectively.
Let there be 100 impressions. Since UBM is identical to
baseline for the first position, we focus on s2.

Baseline Model.
Relevance: Recall that in this scenario all CTR changes
are due to changes in instance relevance. Thus the base-
line model will correctly estimate Pr(E2 = 1) = 0.5, and
correctly estimate relevance of s2 as Pr(C2 = 1|E2 = 1) =
0.1
0.5

= 0.2.

CTR: The baseline model does not make use of prior clicks,
and will estimate Pr(C2 = 1) = 0.1. The absolute error
(summed over 100 impressions) is:

10× |1− Pr(C2 = 1)|+ 90× |1− Pr(C2 = 0)| = 18

UBM.
Relevance: Since Pr(C1 = 1) = 0.2 for s1, UBM estimates
Pr(E2 = 1) as:

Pr(C1 = 1)α2β2,p(1)=1 + Pr(C1 = 0)α2β2,p(1)=0

= 0.2× 0.5× 2 + 0.8× 0.5× 0.5 = 0.4

and therefore estimates relevance as Pr(C2 = 1|E2 = 1) =
0.1
0.4

= 0.25. Notice that UBM ends up with an inaccurate
estimate of relevance.

CTR: UBM model will estimate:

Pr(C2 = 1|C1 = 1) = α2β2,p(1)=1rφ(2)

= 0.5× 2.0× 0.25 = 0.25

Pr(C2 = 1|C1 = 0) = α2β2,p(1)=1rφ(2)

= 0.5× 0.5× 0.25 = 0.0625

Notice that the overall estimate for Pr(C2 = 1) = Pr(C1 =
1) × 0.25 + Pr(C1 = 0) × 0.0625 = 0.1 is correct. The
estimates of Pr(C2 = 1|C1 = 1) and Pr(C2 = 1|C1 = 0) are

9An example setting that yields these parameters is when

the average CTR in position 1 is 1/3, and Pr(C2=1|C1=1)
Pr(C2=1|C1=0)

= 4

for any pair of results. Solving Pr(E2 = 1) = Pr(C1 =
1)α2β2,p(1)=1 + Pr(C1 = 0)α2β2,p(1)=0 yields these values.

also correct. The error in examination probability is exactly
canceled out by the error in the relevance estimate.

The absolute error (over 100 impressions) is:

Error = 5× |1− Pr(C2 = 1|C1 = 1)|
+ 15× |1− Pr(C2 = 0|C1 = 1)

+ 5× |1− Pr(C2 = 1|C1 = 0)|
+ 75× |1− Pr(C2 = 0|C1 = 0)|

= 5× 0.75 + 15× 0.25 + 5× 0.9375 + 75× 0.0625

= 16.875

The absolute error is less, though the relevance estimate is
worse. It is easy to extend this example such that the posi-
tions of s1 and s2 exchange in live serving (by appropriately
choosing bids for s1 and s2, resulting in lower revenue and
CTR in live experiments.

B. REPEATABILITY
We discuss the repeatability of our analysis and experi-

ments, assuming access to logs from a search engine. The
key point is that while we may not have provided sufficient
details for someone to exactly replicate what we did, our re-
sults do not depend on those omitted details, e.g, someone
could use a different machine learning algorithm for predict-
ing relevance, and we would expect them to get the same
results.

In Section 3, recall that the ratio Li(1)/Li(0) only de-
pended on any errors in relevance estimation being roughly
evenly distributed across the two sets. Thus we expect that
one could use any reasonable machine learning algorithm for
predicting relevance (e.g., a production system), and still get
the same result wrt whether Li(1)/Li(0) is different from 1
with statistical significance.

Similarly, in Section 5, we treat the output of the baseline
model as given, and only fit the co-click dependent param-
eters. So the results (ordering of the models wrt accuracy)
should again be independent of which machine learning algo-
rithm is used for the baseline. Thus one can take the output
of any production system for predicting relevance as given,
and repeat our experiment.

In Section 6, it should be straightforward to compute the
adjustments to relevance for max-examination if the produc-
tion system uses a browsing model similar to the baseline
model. If the production system uses a different browsing
model, then one can use our methodology to first estimate
the corrections to get relevance estimates for baseline, and
then estimate a second correction to get the relevance esti-
mates for max-examination. However, it may or may not be
easy to run a live experiment with these corrections, based
on the available infrastructure. If it is difficult to run live
experiments, measuring relevance using human raters would
be as effective, and would in fact nicely complement our ex-
periments.


