
Privacy Preserving Mining of Association Rules

Alexandre Evfimievski
�

Ramakrishnan Srikant Rakesh Agrawal Johannes Gehrke*

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120, USA

ABSTRACT
We present a framework for mining association rules from
transactions consisting of categorical items where the data
has been randomized to preserve privacy of individual trans-
actions. While it is feasible to recover association rules and
preserve privacy using a straightforward \uniform" random-
ization, the discovered rules can unfortunately be exploited
to �nd privacy breaches. We analyze the nature of privacy
breaches and propose a class of randomization operators
that are much more e�ective than uniform randomization in
limiting the breaches. We derive formulae for an unbiased
support estimator and its variance, which allow us to re-
cover itemset supports from randomized datasets, and show
how to incorporate these formulae into mining algorithms.
Finally, we present experimental results that validate the
algorithm by applying it on real datasets.

1. INTRODUCTION
The explosive progress in networking, storage, and proces-

sor technologies is resulting in an unprecedented amount of
digitization of information. It is estimated that the amount
of information in the world is doubling every 20 months
[20]. In concert with this dramatic and escalating increase
in digital data, concerns about privacy of personal informa-
tion have emerged globally [15] [17] [20] [24]. Privacy issues
are further exacerbated now that the internet makes it easy
for the new data to be automatically collected and added
to databases [10] [13] [14] [27] [28] [29]. The concerns over
massive collection of data are naturally extending to ana-
lytic tools applied to data. Data mining, with its promise to
e�ciently discover valuable, non-obvious information from
large databases, is particularly vulnerable to misuse [11] [16]
[20] [23].
An interesting new direction for data mining research is

the development of techniques that incorporate privacy con-
cerns [3]. The following question was raised in [7]: since the

�Department of Computer Science
Cornell University, Ithaca, NY 14853, USA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD02 Edmonton, Alberta, Canada
Copyright 2002 ACM 1-58113-567-X/02/0007 ...$5.00.

primary task in data mining is the development of mod-
els about aggregated data, can we develop accurate mod-
els without access to precise information in individual data
records? Speci�cally, they studied the technical feasibility
of building accurate classi�cation models using training data
in which the sensitive numeric values in a user's record have
been randomized so that the true values cannot be estimated
with su�cient precision. Randomization is done using the
statistical method of value distortion [12] that returns a
value xi + r instead of xi where r is a random value drawn
from some distribution. They proposed a Bayesian proce-
dure for correcting perturbed distributions and presented
three algorithms for building accurate decision trees [9] [21]
that rely on reconstructed distributions.1 In [2], the au-
thors derived an Expectation Maximization (EM) algorithm
for reconstructing distributions and proved that the EM al-
gorithm converged to the maximum likelihood estimate of
the original distribution based on the perturbed data. They
also pointed out that the EM algorithm was in fact identical
to the Bayesian reconstruction procedure in [7], except for
an approximation (partitioning values into intervals) that
was made by the latter.

1.1 Contributions of this Paper
We continue the investigation of the use of randomization

in developing privacy-preserving data mining techniques, and
extend this line of inquiry along two dimensions:

� categorical data instead of numerical data, and

� association rule mining [4] instead of classi�cation.

We will focus on the task of �nding frequent itemsets in
association rule mining, which we brie
y review next.

De�nition 1. Suppose we have a set I of n items: I =
fa1; a2; : : : ; ang. Let T be a sequence of N transactions
T = (t1; t2; : : : ; tN) where each transaction ti is a subset of
I. Given an itemset A � I, its support suppT (A) is de�ned
as

suppT (A) :=
ft 2 T j A � tg

N
: (1)

An itemset A � I is called frequent in T if suppT (A) > � ,
where � is a user-de�ned parameter.

We consider the following setting. Suppose we have a
server and many clients. Each client has a set of items (e.g.,

1Once we have reconstructed distributions, it is straightfor-
ward to build classi�ers that assume independence between
attributes, such as Naive Bayes [19] .

books or web pages or TV programs). The clients want the
server to gather statistical information about associations
among items, perhaps in order to provide recommendations
to the clients. However, the clients do not want the server
to know with certainty who has got which items. When a
client sends its set of items to the server, it modi�es the
set according to some speci�c randomization policy. The
server then gathers statistical information from the modi�ed
sets of items (transactions) and recovers from it the actual
associations.
The following are the important results contained in this

paper:

� In Section 2, we show that a straightforward uniform
randomization leads to privacy breaches.

� We formally model and de�ne privacy breaches in Sec-
tion 3.

� We present a class of randomization operators in Sec-
tion 4 that can be tuned for di�erent tradeo�s between
discoverability and privacy breaches. We derive for-
mulae for the e�ect of randomization on support, and
show how to recover the original support of an associ-
ation from the randomized data.

� We present experimental results on two real datasets
in Section 5, as well as graphs showing the relationship
between discoverability, privacy, and data characteris-
tics.

1.2 Related Work
There has been extensive research in the area of statistical

databases motivated by the desire to provide statistical in-
formation (sum, count, average, maximum, minimum, pth
percentile, etc.) without compromising sensitive informa-
tion about individuals (see surveys in [1] [22].) The pro-
posed techniques can be broadly classi�ed into query re-
striction and data perturbation. The query restriction fam-
ily includes restricting the size of query result, controlling
the overlap amongst successive queries, keeping audit trail
of all answered queries and constantly checking for possi-
ble compromise, suppression of data cells of small size, and
clustering entities into mutually exclusive atomic popula-
tions. The perturbation family includes swapping values
between records, replacing the original database by a sam-
ple from the same distribution, adding noise to the values
in the database, adding noise to the results of a query, and
sampling the result of a query. There are negative results
showing that the proposed techniques cannot satisfy the con-

icting objectives of providing high quality statistics and at
the same time prevent exact or partial disclosure of individ-
ual information [1].
The most relevant work from the statistical database lit-

erature is the work by Warner [26], where he developed
the \randomized response" method for survey results. The
method deals with a single boolean attribute (e.g., drug ad-
diction). The value of the attribute is retained with prob-
ability p and
ipped with probability 1 � p. Warner then
derived equations for estimating the true value of queries
such as COUNT (Age = 42 & Drug Addiction = Yes). The
approach we present in Section 2 can be viewed as a gener-
alization of Warner's idea.
Another related work is [25], where they consider the

problem of mining association rules over data that is ver-
tically partitioned across two sources, i.e, for each transac-
tion, some of the items are in one source, and the rest in the

other source. They use multi-party computation techniques
for scalar products to be able to compute the support of an
itemset (when the two subsets that together form the item-
set are in di�erent sources), without either source revealing
exactly which transactions support a subset of the itemset.
In contrast, we focus on preserving privacy when the data
is horizontally partitioned, i.e., we want to preserve privacy
for individual transactions, rather than between two data
sources that each have a vertical slice.
Related, but not directly relevant to our current work,

is the problem of inducing decision trees over horizontally
partitioned training data originating from sources who do
not trust each other. In [16], each source �rst builds a lo-
cal decision tree over its true data, and then swaps values
amongst records in a leaf node of the tree to generate ran-
domized training data. Another approach, presented in [18],
does not use randomization, but makes use of cryptographic
oblivious functions during tree construction to preserve pri-
vacy of two data sources.

2. UNIFORM RANDOMIZATION
A straightforward approach for randomizing transactions

would be to generalize Warner's \randomized response" me-
thod, described in Section 1.2. Before sending a transaction
to the server, the client takes each item and with probabil-
ity p replaces it by a new item not originally present in this
transaction. Let us call this process uniform randomization.
Estimating true (nonrandomized) support of an itemset

is nontrivial even for uniform randomization. Randomized
support of, say, a 3-itemset depends not only on its true
support, but also on the supports of its subsets. Indeed, it
is much more likely that only one or two of the items are
inserted by chance than all three. So, almost all \false" oc-
currences of the itemset are due to (and depend on) high
subset supports. This requires estimating the supports of
all subsets simultaneously. (The algorithm is similar to the
algorithm presented in Section 4 for select-a-size random-
ization, and the formulae from Statements 1, 3 and 4 apply
here as well.) For large values of p, most of the items in
most randomized transactions will be \false", so we seem to
have obtained a reasonable privacy protection. Also, if there
are enough clients and transactions, then frequent itemsets
will still be \visible", though less frequent than originally.
For instance, after uniform randomization with p = 80%, an
itemset of 3 items that originally occurred in 1% transac-
tions will occur in about 1% � (0:2)3 = 0:008% transactions,
which is about 80 transactions per each million. The op-
posite e�ect of \false" itemsets becoming more frequent is
comparatively negligible if there are many possible items:
for 10,000 items, the probability that, say, 10 randomly in-
serted items contain a given 3-itemset is less than 10�7%.
Unfortunately, this randomization has a problem. If we

know that our 3-itemset escapes randomization in 80 per
million transactions, and that it is unlikely to occur even
once because of randomization, then every time we see it
in a randomized transaction we know with near certainty of
its presence in the nonrandomized transaction. With even
more certainty we will know that at least one item from this
itemset is \true": as we have mentioned, a chance insertion
of only one or two of the items is much more likely than
of all three. In this case we can say that a privacy breach
has occurred. Although privacy is preserved on average,
personal information leaks through uniform randomization

for some fraction of transactions, despite the high value of p.
The rest of the paper is devoted to de�ning a framework

for studying privacy breaches and developing techniques for
�nding frequent itemsets while avoiding breaches.

3. PRIVACY BREACHES

De�nition 2. Let (
;F ;P) be a probability space of el-
ementary events over some set
 and �-algebra F . A ran-
domization operator is a measurable function

R :
� fall possible T g ! fall possible T g

that randomly transforms a sequence of N transactions into
a (usually) di�erent sequence of N transactions. Given a
sequence of N transactions T , we shall write T 0 = R(T),
where T is constant and R(T) is a random variable.

De�nition 3. Suppose that a nonrandomized sequence T
is drawn from some known distribution, and ti 2 T is the
i-th transaction in T . A general privacy breach of level �
with respect to a property P (ti) occurs if

9T 0 : P [P (ti) j R(T) = T 0] > �:

We say that a property Q(T 0) causes a privacy breach of
level � with respect to P (ti) if

P [P (ti) j Q(R(T))] > �:

When we de�ne privacy breaches, we think of the prior
distribution of transactions as known, so that it makes sense
to speak about a posterior probability of a property P (ti)
versus prior. In practice, however, we do not know the
prior distribution. In fact, there is no prior distribution; the
transactions are not randomly generated. However, model-
ing transactions as being randomly generated from a prior
distribution allows us to cleanly de�ne privacy breaches.
Consider a situation when, for some transaction ti 2 T ,

an itemset A � I and an item a 2 A, the property \A � t0i 2
T 0" causes a privacy breach w. r. t. the property \a 2 ti." In
other words, the presence of A in a randomized transaction
makes it likely that item a is present in the corresponding
nonrandomized transaction.

De�nition 4. We say that itemset A causes a privacy
breach of level � if for some item a 2 A and some i 2 1 : : :N
we have P [a 2 ti j A � t0i] > �.

We will focus on controlling the class of privacy breaches
given by De�nition 4. Thus we ignore the e�ect of other
information the server obtains from a randomized transac-
tion, such as which items the randomized transaction does
not contain, or the randomized transaction size. We also
do not attempt to control breaches that occur because the
server knows some other information about items and clients
besides the transactions. For example, the server may know
some geographical or demographic data about the clients.
Finally, in De�nition 4, we only considered positive breaches,
i.e., we know with high probability that an item was present
in the original transaction. In some scenarios, being con�-
dent that an item was not present in the original transaction
may also be considered a privacy breach.

4. ALGORITHM

\Where does a wise man hide a leaf? In the
forest. But what does he do if there is no forest?"
... \He grows a forest to hide it in." { G.K.
Chesterton, \The Sign of the Broken Sword"

The intuition of breach control is quite simple: in addition to
replacing some of the items, we shall insert so many \false"
items into a transaction that one is as likely to see a \false"
itemset as a \true" one.

4.1 Randomization Operators

De�nition 5. We call randomization R a per-transaction
randomization if, for T = (t1; t2; : : : ; tN), we can represent
R(T) as

R(t1; t2; : : : ; tN) = (R(1; t1);R(2; t2); : : : ;R(N; tN));

where R(i; t) are independent random variables whose dis-
tributions depend only on t (and not on i). We shall write
t0i = R(i; ti) = R(ti).

De�nition 6. A randomization operator R is called item-
invariant if, for every transaction sequence T and for ev-
ery permutation � : I ! I of items, the distribution of
��1R(�T) is the same as of R(T). Here �T means the ap-
plication of � to all items in all transactions of T at once.

De�nition 7. A select-a-size randomization operator has
the following parameters, for each possible input transaction
size m:

� Default probability of an item (also called randomiza-
tion level) �m 2 (0; 1);

� Transaction subset size selection probabilities pm[0],
pm[1]; : : : ; pm[m], such that every pm[j] > 0 and

pm[0] + pm[1] + : : :+ pm[m] = 1:

Given a sequence of transactions T = (t1; t2; : : : ; tN), the
operator takes each transaction ti independently and pro-
ceeds as follows to obtain transaction t0i (m = jtij).

1. The operator selects an integer j at random from the
set f0; 1; : : : ;mg so that P [j is selected] = pm[j].

2. It selects j items from ti, uniformly at random (with-
out replacement). These items, and no other items
of ti, are placed into t0i.

3. It considers each item a 62 ti in turn and tosses a coin
with probability �m of \heads" and 1��m of \tails".
All those items for which the coin faces \heads" are
added to t0i.

Remark 1. Both uniform (Section 2) and select-a-size op-
erators are per-transaction because they apply the same
randomization algorithm to each transaction independently.
They are also item-invariant since they do not use any item-
speci�c information (if we rename or reorder the items, the
outcome probabilities will not be a�ected).

De�nition 8. A cut-and-paste randomization operator is
a special case of a select-a-size operator (and which we shall
actually test on datasets). For each possible input transac-
tion size m, it has two parameters: �m 2 (0; 1) (randomiza-
tion level) and an integer Km > 0 (the cuto�). The operator
takes each input transaction ti independently and proceeds
as follows to obtain transaction t0i (here m = jtij) :

1. It chooses an integer j uniformly at random between
0 and Km; if j > m, it sets j = m.

2. The operator selects j items out of ti uniformly at ran-
dom (without replacement). These items are placed
into t0i.

3. Each other item (including the rest of ti) is placed
into t0i with probability �m, independently.

Remark 2. For any m, a cut-and-paste operator has only
two parameters, �m and Km, to play with; moreover, Km

is an integer. Because it is easy to �nd optimal values for
these parameters (Section 4.4), we chose to test this opera-
tor, leaving open the problem of optimizing the m parame-
ters of the \unabridged" select-a-size. To see that cut-and-
paste is a case of select-a-size, let us write down the formulae
for the pm[j]'s:

pm[j] =

minfK; jgX
i=0

m� i

j � i

!
�j�i(1� �)m�j �

�

�
1�m=(K + 1) if i =m and i < K
1=(K + 1) otherwise

Now let us give one example of a randomization operator
that is not a per-transaction randomization, because it uses
the knowledge of several transactions per each randomized
transaction.

Example 1. The mixing randomization operator has one
integer parameter K > 2 and one real-valued parameter p 2
(0; 1). Given a sequence of transactions T = (t1; t2; : : : ; tN),
the operator takes each transaction ti independently and
proceeds as follows to obtain transaction t0i:

1. Other than ti, pick K�1 more transactions (with re-
placement) from T and union the K transactions as
sets of items. Let t00i be this union.

2. Consider each item a 2 t00i in turn and toss a coin with
probability p of \heads" and 1� p of \tails".

3. All those items for which the coin faces \tails" are
removed from the transaction. The remaining items
constitute the randomized transaction.

For the purpose of privacy-preserving data mining, it is
natural to focus mostly on per-transaction randomizations,
since they are the easiest and safest to implement. Indeed,
a per-transaction randomization does not require the users
(who submit randomized transactions to the server) to com-
municate with each other in any way, nor to exchange ran-
dom bits. On the contrary, implementing mixing random-
ization, for example, requires to organize an exchange of
nonrandomized transactions between users, which opens an
opportunity for cheating or eavesdropping.

4.2 Effect of Randomization on Support
Let T be a sequence of transactions of length N , and

let A be some subset of items (that is, A � I). Suppose
we randomize T and get T 0 = R(T). The support s0 =

suppT
0

(A) of A for T 0 is a random variable that depends
on the outcome of randomization. Here we are going to
determine the distribution of s0, under the assumption of
having a per-transaction and item-invariant randomization.

De�nition 9. The fraction of the transactions in T that
have intersection with A of size l among all transactions in
T is called partial support of A for intersection size l:

suppTl (A) :=
ft 2 T j #(A \ t) = lg

N
: (2)

It is easy to see that suppT (A) = suppTk (A) for k = jAj,
and that

kX
l=0

suppTl (A) = 1

since those transactions in T that do not intersect A at all
are covered in suppT0 (A).

De�nition 10. Suppose that our randomization operator
is both per-transaction and item-invariant. Consider a trans-
action t of size m and an itemset A � I of size k. After
randomization, transaction t becomes t0. We de�ne

pmk
�
l! l0

�
= p

�
l ! l0

�
:=

P [#(t0 \A) = l0 j #(t \A) = l]: (3)

Here both l and l0 must be integers in f0; 1; : : : ; kg.

Remark 3. The value of pmk [l ! l0] is well-de�ned (does
not depend on any other information about t and A, or other
transactions in T and T 0 besides t and t0). Indeed, because
we have a per-transaction randomization, the distribution of
t0 depends neither on other transactions in T besides t, nor
on their randomized outcomes. If there were other t1 and B
with the same (m;k; l), but a di�erent probability (3) for the
same l0, we could consider a permutation � of I such that
�t = t1 and �A = B; the application of � or of ��1 would
preserve intersection sizes l and l0. By item-invariance we
have

P [#(t0 \A) = l0] = P [#(��1R(�t) \ A) = l0];

but by the choice of � we also have

P [#(��1R(�t) \ A) = l0] = P [#(��1R(t1) \ ��1B) = l0]

= P [#(t01 \B) = l0] 6= P [#(t0 \A) = l0];

a contradiction.

Statement 1. Suppose that our randomization operator
is both per-transaction and item-invariant. Suppose also that
all the N transactions in T have the same sizem. Then, for
a given subset A � I, jAj = k, the random vector

N � (s00; s
0
1; : : : ; s

0
k); where s0l := suppT

0

l (A) (4)

is a sum of k + 1 independent random vectors, each having
a multinomial distribution. Its expected value is given by

E (s00; s
0
1; : : : ; s

0
k)
T = P � (s0; s1; : : : ; sk)

T (5)

where P is the (k+1)� (k+1) matrix with elements Pl0 l =
p [l! l0], and the covariance matrix is given by

Cov (s00; s
0
1; : : : ; s

0
k)
T =

1

N
�

kX
l=0

slD[l] (6)

where each D[l] is a (k + 1)� (k + 1) matrix with elements

D[l]i j = p [l ! i] � �i=j � p [l ! i] � p [l ! j] : (7)

Here sl denotes suppTl (A), and the T over vectors denotes
the transpose operation; �i=j is one if i = j and zero other-
wise.

Proof. See Appendix A.1.

Remark 4. In Statement 1 we have assumed that all trans-
actions in T have the same size. If this is not so, we have
to consider each transaction size separately and then use
per-transaction independence.

Statement 2. For a select-a-size randomization with
randomization level � and size selection probabilities
fpm[j]g, we have:

pm
k

�
l! l0

�
=

mX
j=0

pm[j]�

minfj;l; l0gX
q=maxf0; j+l�m; l+l0�kg

l

q

!
m�l

j�q

!

m

j

! �

�

k�l

l0�q

!
�l

0�q(1� �)k�l�l
0+q: (8)

Proof. See Appendix A.2.

4.3 Support Recovery
Let us assume that all transactions in T have the same

size m, and let us denote

~s := (s0; s1; : : : ; sk)
T ; ~s 0 := (s0; s1; : : : ; sk)

T ;

then, according to (5), we have

E ~s 0 = P � ~s: (9)

Denote Q = P�1 (assume that it exists) and multiply both
sides of (9) by Q:

~s = Q � E ~s 0 = E Q � ~s 0:

We have thus obtained an unbiased estimator for the original
partial supports given randomized partial supports:

~sest := Q � ~s 0 (10)

Using (6), we can compute the covariance matrix of ~sest:

Cov ~sest = Cov (Q � ~s 0) = Q (Cov ~s 0)QT =

=
1

N
�

kX
l=0

slQD[l]QT : (11)

If we want to estimate this covariance matrix by look-
ing only at randomized data, we may use ~sest instead of ~s
in (11):

(Cov ~sest)est =
1

N
�

kX
l=0

(~sest)lQD[l]QT :

This estimator is also unbiased:

E (Cov ~sest)est =
1

N
�

kX
l=0

(E ~sest)lQD[l]QT = Cov ~sest:

In practice, we want only the k-th coordinate of ~s , that is,
the support s = suppT (A) of our itemset A in T . We denote
by ~s the k-th coordinate of ~sest, and use ~s to estimate s.
Let us compute simple formulae for ~s, its variance and the
unbiased estimator of its variance. Denote

q
�
l l0

�
:= Ql l0 :

Statement 3.

~s =
kX

l0=0

s0l0 � q
�
k l0

�
;

Var ~s =
1

N

kX
l=0

sl
� kX
l0=0

p
�
l ! l0

�
q
�
k l0

�2
� �l=k

�
;

(Var ~s)est =
1

N

kX
l0=0

s0l0
�
q
�
k l0

�2
� q

�
k l0

� �
:

Proof. See Appendix A.3.

We conclude this subsection by giving a linear coordinate
transformation in which the matrix P from Statement 1
becomes triangular. (We use this transformation for privacy
breach analysis in Section 4.4.) The coordinates after the
transformation have a combinatorial meaning, as given in
the following de�nition.

De�nition 11. Suppose we have a transaction sequence T
and an itemset A � I. Given an integer l between 0 and
k = jAj, consider all subsets C � A of size l. The sum of
supports of all these subsets is called the cumulative support
for A of order l and is denoted as follows:

�l = �l(A;T) :=
X

C�A; jCj= l

suppT (C) ;

~� := (�0;�1; : : : ;�k)
T (12)

Statement 4. The vector ~� of cumulative supports is
a linear transformation of the vector ~s of partial supports,
namely,

�l =
kX
j=l

j

l

!
sj and sl =

kX
j=l

(�1)j�l

j

l

!
�j; (13)

in the ~� and ~� 0 space (instead of ~s and ~s 0) matrix P is
lower triangular.

Proof. See Appendix A.4.

4.4 Limiting Privacy Breaches
Here we determine how privacy depends on randomiza-

tion. We shall use De�nition 4 and assume a per-transaction
and item-invariant randomization.
Consider some itemset A � I and some item a 2 A; �x

a transaction size m. We shall assume that m is known to
the server, so that we do not have to combine probabilities

for di�erent nonrandomized sizes. Assume also that a par-
tial support sl = suppTl (A) approximates the corresponding
prior probability P [#(t \ A) = l]. Suppose we know the
following prior probabilities:

s+l := P [#(t \A) = l; a 2 t];

s�l := P [#(t \A) = l; a 62 t]:

Notice that sl = s+l + s�l simply because

#(t \A) = l ,

�
a 2 t & #(t \A) = l; or
a 62 t & #(t \A) = l:

Let us use these priors and compute the posterior proba-
bility of a 2 t given A � t0:

P [a 2 t j A � t0] =
P [a 2 t; A � t0]

P [A � t0]
=

=
kX
l=1

P [#(t \A) = l; a 2 t; A � t0]
. kX

l=0

sl � p [l ! k]

=
kX
l=1

P [#(t \A) = l; a 2 t] � p [l ! k]
. kX

l=0

sl � p [l ! k]

=
kX
l=1

s+l � p [l ! k]
. kX

l=0

sl � p [l! k]:

Thus, in order to prevent privacy breaches of level 50% as
de�ned in De�nition 4, we need to ensure that always

kX
l=1

s+l � p [l ! k] < 0:5 �
kX
l=0

sl � p [l ! k] : (14)

The problem is that we have to randomize the data before
we know any supports. Also, we may not have the luxury of
setting \oversafe" randomization parameters because then
we may not have enough data to perform a reasonably ac-
curate support recovery. One way to achieve a compromise
is to:

1. Estimate maximum possible support smax(k;m) of a
k-itemset in the transactions of given size m, for dif-
ferent k and m;

2. Given the maximum supports, �nd values for sl and
s+l that are most likely to cause a privacy breach;

3. Make randomization just strong enough to prevent
such a privacy breach.

Since s+0 = 0, the most privacy-challenging situations occur
when s0 is small, that is, when our itemset A and its subsets
are frequent.
In our experiments we consider a privacy-challenging k-

itemset A such that, for every l > 0, all its subsets of size l
have the maximum possible support smax(l;m). The partial
supports for such a test-itemset are computed from the cu-
mulative supports �l using Statement 4. By it and by (12),
we have (l > 0)

sl =
kX
j=l

(�1)j�l

j

l

!
�j; �j =

k

j

!
smax(j;m) (15)

since there are
�
k

j

�
j-subsets in A. The values of s+l follow if

we note that all l-subsets of A, with a and without, appear

equally frequently as t \A:

s+l := P [#(t \A) = l; a 2 t] =

= P [a 2 t j #(t \A) = l] � sl = l=k � sl: (16)

While one can construct cases that are even more privacy-
challenging (for example, if a 2 A occurs in a transaction
every time any nonempty subset of A does), we found the
above model (15) and (16) to be su�ciently pessimistic on
our datasets.
We can now use these formulae to obtain cut-and-paste

randomization parameters �m and Km as follows. Given m,
consider all cuto�s from Km = 3 to some Kmax (usually this
Kmax equals the maximum transaction size) and determine
the smallest randomization levels �m(Km) that satisfy (14).
Then select (Km; �m) that gives the best discoverability (by
computing the lowest discoverable supports, see Section 5.1).

4.5 Discovering Associations
We show how to discover itemsets with high true support

given a set of randomized transactions. Although we use the
Apriori algorithm [5] to make the ideas concrete, the mod-
i�cations directly apply to any algorithm that uses Apriori
candidate generation, i.e., to most current association dis-
covery algorithms.2 The key lattice property of supports
used by Apriori is that, for any two itemsets A � B, the
true support of A is equal to or larger than the true support
of B. A simpli�ed version of Apriori, given a (nonrandom-
ized) transactions �le and a minimum support smin, works
as follows:

1. Let k = 1, let \candidate sets" be all single items.
Repeat the following until no candidate sets are left:

(a) Read the data �le and compute the supports of
all candidate sets;

(b) Discard all candidate sets whose support is be-
low smin;

(c) Save the remaining candidate sets for output;

(d) Form all possible (k + 1)-itemsets such that all
their k-subsets are among the remaining candi-
dates. Let these itemsets be the new candidate
sets.

(e) Let k = k+ 1.

2. Output all the saved itemsets.

It is (conceptually) straightforward to modify this algo-
rithm so that now it reads the randomized dataset, computes
partial supports of all candidate sets (for all nonrandomized
transaction sizes) and recovers their predicted supports and
sigmas using the formulae from Statement 3. However, for
the predicted supports the lattice property is no longer true.
It is quite likely that for an itemset that is slightly above
minimum support and whose predicted support is also above
minimum support, that one of its subsets will have predicted
support below minimum support. So if we discard all candi-
dates below minimum support for the purpose of candidate
generation, we will miss many (perhaps even the majority)

2The main class of algorithms where this would not apply
are those that �nd only maximal frequent itemsets, e.g., [8].
However, randomization precludes �nding very long item-
sets, so this is a moot point.

of the longer frequent itemsets. Hence, for candidate gen-
eration, we discard only those candidates whose predicted
support is \signi�cantly" smaller than smin, where signi�-
cance is measured by means of predicted sigmas. Here is
the modi�ed version of Apriori :

1. Let k = 1, let \candidate sets" be all single-item sets.
Repeat the following until k is too large for support
recovery (or until no candidate sets are left):

(a) Read the randomized data �le and compute the
partial supports of all candidate sets, separately
for each nonrandomized transaction size3;

(b) Recover the predicted supports and sigmas for the
candidate sets;

(c) Discard every candidate set whose support is be-
low its candidate limit;

(d) Save for output only those candidate sets whose
predicted support is at least smin;

(e) Form all possible (k + 1)-itemsets such that all
their k-subsets are among the remaining candi-
dates. Let these itemsets be the new candidate
sets.

(f) Let k = k + 1.

2. Output all the saved itemsets.

We tried smin � � and smin � 2� as the candidate limit,
and found that the former does a little better than the latter.
It prunes more itemsets and therefore makes the algorithm
work faster, and, when it discards a subset of an itemset
with high predicted support, it usually turns out that the
true support of this itemset is not as high.

5. EXPERIMENTAL RESULTS
Before we come to the experiments with datasets, we �rst

show in Section 5.1 how our ability to recover supports de-
pends on the permitted breach level, as well as other data
characteristics. We then describe the real-life datasets in
Section 5.2, and present results on these datasets in Sec-
tion 5.3.

5.1 Privacy, Discoverability and Dataset Char-
acteristics

We de�ne the lowest discoverable support as the support
at which the predicted support of an itemset is four sigmas
away from zero, i.e, we can clearly distinguish the support
of this itemset from zero. In practice, we may achieve rea-
sonably good results even if the minimum support level is
slightly lower than four sigma (as was the case for 3-itemsets
in the randomized soccer, see below). However, the lowest
discoverable support is a nice way to illustrate the interac-
tion between discoverability, privacy breach levels, and data
characteristics.
Figure 1 shows how the lowest discoverable support changes

with the privacy breach level. For higher privacy breach
levels such as 95% (which could be considered a \plausi-
ble denial" breach level), we can discover 3-itemsets at very
low supports. For more conservative privacy breach levels

3In our experiments, the nonrandomized transaction size is
always known and included as a �eld into every randomized
transaction

0

0.5

1

1.5

2

2.5

30 40 50 60 70 80 90

Lo
w

es
t D

is
co

ve
ra

bl
e

S
up

po
rt

, %

Privacy breach level, %

3-itemsets
2-itemsets

1-items

Figure 1: Lowest discoverable support for di�er-

ent breach levels. Transaction size is 5, �ve million
transactions.

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100

Lo
w

es
t D

is
co

ve
ra

bl
e

S
up

po
rt

, %

Number of Transactions, millions

3-itemsets
2-itemsets

1-items

Figure 2: Lowest discoverable support versus num-
ber of transactions. Transaction size is 5, breach

level is 50%.

such as 50%, the lowest discoverable support is signi�cantly
higher. It is interesting to note that at higher breach lev-
els (i.e. weaker randomization) it gets harder to discover
1-itemset supports than 3-itemset supports. This happens
because the variance of a 3-itemset predictor depends highly
nonlinearly on the amount of false items added while ran-
domizing. When we add fewer false items at higher breach
levels, we generate so much fewer false 3-itemset positives
than false 1-itemset positives that 3-itemsets get an advan-
tage over single items.
Figure 2 shows that the lowest discoverable support is

roughly inversely proportional to the square root of the num-
ber of transactions. Indeed, the lowest discoverable sup-
port is de�ned to be proportional to the standard deviation
(square root of the variance) of this support's prediction. If
all the partial supports are �xed, the prediction's variance
is inversely proportional to the number N of transactions
according to Statement 3. In our case, the partial supports
depend on N (because the lowest discoverable support does),
i.e. they are not �xed; however, this does not appear to af-
fect the variance very signi�cantly (but justi�es the word
\roughly").
Finally, Figure 3 shows that transaction size has a sig-

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

Lo
w

es
t D

is
co

ve
ra

bl
e

S
up

po
rt

, %

Transaction size

3-itemsets
2-itemsets

1-items

Figure 3: Lowest discoverable support for di�erent

transaction sizes. Five million transactions, breach
level is 50%.

ni�cant in
uence on support discoverability. In fact, for
transactions of size 10 and longer, it is typically not possi-
ble to make them both breach-safe and simultaneously get
useful information for mining transactions. Intuitively, a
long transaction contains too much personal information to
hide, because it may contain long frequent itemsets whose
appearance in the randomized transaction could result in a
privacy breach. We have to insert a lot of false items and cut
o� many true ones to ensure that such a long itemset in the
randomized transaction is about as likely to be a false pos-
itive as to be a true positive. Such a strong randomization
causes an exceedingly high variance in the support predictor
for 2- and especially 3-itemsets, since it drives down their
probability to \tunnel" through while raising high the prob-
ability of a false positive. In both our datasets we discard
long transactions. The question of how to safely randomize
and mine long transactions is left open.

5.2 The Datasets
We experimented with two \real-life" datasets. The soccer

dataset is generated from the clickstream log of the 1998
World Cup Web site, which is publicly available at
ftp://researchsmp2.cc.vt.edu/pub/worldcup/4. We scan-
ned the log and produced a transaction �le, where each
transaction is a session of access to the site by a client. Each
item in the transaction is a web request. Not all web requests
were turned into items; to become an item, the request must
satisfy the following:

1. Client's request method is GET;

2. Request status is OK;

3. File type is HTML.

A session starts with a request that satis�es the above prop-
erties, and ends when the last click from this ClientID time-
outs. The timeout is set as 30 minutes. All requests in a ses-
sion have the same ClientID. The soccer transaction �le was
then processed further: we deleted from all transactions the
items corresponding to the French and English front page
frames, and then we deleted all empty transactions and all
transactions of size above 10. The resulting soccer dataset

4M. Arlitt and T. Jin, \1998 World Cup Web
Site Access Logs", August 1998. Available at
http://www.acm.org/sigcomm/ITA/

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 T

ra
ns

ac
tio

ns
, m

ill
io

ns

Transaction size

Soccer
Mailorder

Figure 4: Number of transactions for each transac-

tion size in the soccer and mailorder datasets.

consists of 6; 525; 879 transactions, distributed as shown in
Fig. 4.
The mailorder dataset is the same as that used in [6].

The original dataset consisted of around 2.9 million transac-
tions, 15,836 items, and around 2.62 items per transaction.
Each transaction was the set of items purchased in a single
mail order. However, very few itemsets had reasonably high
supports. For instance, there were only two 2-itemsets with
support > 0:2%, only �ve 3-itemsets with support > 0:05%.
Hence we decided to substitute all items by their parents in
the taxonomy, which had reduced the number of items from
15836 to 96. It seems that, in general, moving items up
the taxonomy is a natural thing to do for preserving privacy
without losing aggregate information. We also discarded all
transactions of size > 8 (which was less than 1% of all trans-
actions) and �nally obtained a dataset containing 2; 859; 314
transactions (Fig. 4).

5.3 The Results
We report the results for both datasets at a minimum

support that is close to the lowest discoverable support, in
order to show the resilience of our algorithm even at these
very low support levels. We targeted a conservative breach
level of 50%, so that, given a randomized transaction, for any
item in the transaction it is at least as likely that someone
did not buy that item (or access a web page) as that they
did buy that item.
We used cut-and-paste randomization (see De�nition 8)

that has only two parameters, randomization level and cut-
o�, per each transaction size. We chose a cuto� of 7 for
our experiments as a good compromise between privacy and
discoverability. Given the values of maximum supports, we
then used the methodology from Section 4.4 to �nd the low-
est randomization level such that the breach probability (for
each itemset size) is still below the desired breach level. The
actual parameters (Km is the cuto�, �m is the randomiza-
tion level for transaction size m) for soccer were:

m 1 2 3 4 5 6 7 8 9 10
Km 7 7 7 7 7 7 7 7 7 7
�m% 4.7 16.8 21.4 32.2 35.3 42.9 46.1 42.0 40.9 39.5

and for mailorder were:

m 1 2 3 4 5 6 7
Km 7 7 7 7 7 7 7
�m% 8.9 20.4 25.0 33.4 43.5 50.5 59.2

Table 1 shows what happens if we mine itemsets from both
randomized and nonrandomized �les and then compare the
results. We can see that, even for a low minimum support
of 0:2%, most of the itemsets are mined correctly from the
randomized �le. There are comparatively few false posi-
tives (itemsets wrongly included into the output) and even
fewer false drops (itemsets wrongly omitted). The predicted
sigma for 3-itemsets ranges in 0:066�0:07% for soccer and
in 0:047�0:048% for mailorder; for 2- and 1-itemsets sigmas
are even less.
One might be concerned about the true supports of the

false positives. Since we know that there are many more
low-supported itemsets than there are highly supported, we
might wonder whether most of the false positives are out-
liers, that is, have true support near zero. We have indeed
seen outliers; however, it turns out that most of the false
positives are not so far o�. The tables 2 and 3 show that
usually the true supports of false positives, as well as the
predicted supports of false drops, are closer to 0:2% than to
zero. This good news demonstrates the promise of random-
ization as a practical privacy-preserving approach.

Privacy Analysis We evaluate privacy breaches, i.e., the
conditional probabilities from De�nition 4, as follows. We
count the occurrences of an itemset in a randomized transac-
tion and its sub-items in the corresponding nonrandomized
transaction. For example, assume an itemset fa; b; cg oc-
curs 100 times in the randomized data among transactions
of length 5. Out of these 100 occurrences, 60 of the corre-
sponding original transactions had the item b. We then say
that this itemset caused a 60% privacy breach for transac-
tions of length 5, since for these 100 randomized transac-
tions, we estimate with 60% con�dence that the item b was
present in the original transaction.
Out of all sub-items of an itemset, we choose the item that

causes the worst privacy breach. Then, for each combination
of transaction size and itemset size, we compute over all
frequent5 itemsets the worst and the average value of this
breach level. Finally, we pick the itemset size that gave the
worst value for each of these two values.
Table 4 shows the results of the above analysis. To the left

of the semicolon is the itemset size that was the worst. For
instance, for all transactions of length 5 for soccer, the worst
average breach was with 4-itemsets (43.9% breach), and the
worst breach was with a 5-itemset (49.7% breach). We can
see that, apart from
uctuations, the 50% level is observed
everywhere except of a little \slip" for 9- and 10-item trans-
actions of soccer. The \slip" resulted from our decision
to use the corresponding maximal support information only
for itemset sizes up to 7 (while computing randomization
parameters).6 However, since such long associations cannot
be discovered, in practice, we will not get privacy breaches
above 50%.

Summary Despite choosing a conservative privacy breach
level of 50%, and further choosing a minimum support around
the lowest discoverable support, we were able to successfully
�nd most of the frequent itemsets, with relatively small num-
bers of false drops and false positives.

5If there are no frequent itemsets for some combination, we
pick the itemsets with the highest support.
6While we could have easily corrected the slip, we felt it
more instructive to leave it in.

(a) mailorder, 0.2% minimum support

Itemset True True False False
Size Itemsets Positives Drops Positives
1 65 65 0 0
2 228 212 16 28
3 22 18 4 5

(b) soccer, 0.2% minimum support

Itemset True True False False
Size Itemsets Positives Drops Positives
1 266 254 12 31
2 217 195 22 45
3 48 43 5 26

Table 1: Results on Real Datasets

(a) mailorder, > 0:2% true support

predicted support
size Itemsets < 0:1 0:1�0:15 0:15�0:2 > 0:2
1 65 0 0 0 65
2 228 0 1 15 212
3 22 0 1 3 18

(b) soccer, > 0:2% true support

predicted support
size Itemsets < 0:1 0:1�0:15 0:15�0:2 > 0:2
1 266 0 2 10 254
2 217 0 5 17 195
3 48 0 1 4 43

Table 2: Analysis of false drops

(a) mailorder, > 0:2% predicted support

true support
size Itemsets < 0:1 0:1�0:15 0:15�0:2 > 0:2
1 65 0 0 0 65
2 240 0 0 28 212
3 23 1 2 2 18

(b) soccer, > 0:2% predicted support

true support
size Itemsets < 0:1 0:1�0:15 0:15�0:2 > 0:2
1 285 0 7 24 254
2 240 7 10 28 195
3 69 5 13 8 43

Table 3: Analysis of false positives

soccer

Transaction size: 1 2 3 4 5 6 7 8 9 10
Worst Average: 1: 4.4% 2: 20.2% 3: 39.2% 4: 44.5% 4: 43.9% 4: 37.5% 4: 36.2% 4: 38.7% 8: 51.0% 10: 49.4%

Worst of the Worst: 1: 45.5% 2: 45.4% 3: 53.2% 4: 49.8% 5: 49.7% 5: 42.7% 5: 41.8% 5: 44.5% 9: 66.2% 10: 65.6%

mailorder

Transaction size: 1 2 3 4 5 6 7
Worst Average: 1: 12.0% 2: 27.5% 3: 48.4% 4: 51.5% 5: 51.7% 5: 51.9% 6: 49.8%

Worst of the Worst: 1: 47.6% 2: 51.9% 3: 53.6% 4: 53.1% 5: 53.6% 6: 55.4% 7: 51.9%

Table 4: Actual Privacy Breaches

6. CONCLUSIONS
In this paper, we have presented three key contributions

toward mining association rules while preserving privacy.
First, we pointed out the problem of privacy breaches, pre-
sented their formal de�nitions and proposed a natural solu-
tion. Second, we gave a sound mathematical treatment for a
class of randomization algorithms and derived formulae for
support and variance prediction, and showed how to incor-
porate these formulae into mining algorithms. Finally, we
presented experimental results that validated the algorithm
in practice by applying it to two real datasets from di�erent
domains.
We conclude by raising three interesting questions for fu-

ture research. Our approach deals with a restricted (albeit
important) class of privacy breaches; can we extend it to
cover other kinds of breaches? Second, what are the theo-
retical limits on discoverability for a given level of privacy
(and vice versa)? Finally, can we combine randomization
and cryptographic protocols to get the strengths of both
without the weaknesses of either?

7. REFERENCES
[1] N. R. Adam and J. C. Wortman. Security-control

methods for statistical databases. ACM Computing
Surveys, 21(4):515{556, Dec. 1989.

[2] D. Agrawal and C. C. Aggarwal. On the Design and
Quanti�cation of Privacy Preserving Data Mining
Algorithms. In Proc. of the 20th ACM Symposium on
Principles of Database Systems, pages 247{255, Santa
Barbara, California, May 2001.

[3] R. Agrawal. Data Mining: Crossing the Chasm. In 5th
Int'l Conference on Knowledge Discovery in Databases
and Data Mining, San Diego, California, August 1999.
Available from http://www.almaden.ibm.com/cs/quest/

papers/kdd99 chasm.ppt.
[4] R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large
databases. In Proc. of the ACM SIGMOD Conference
on Management of Data, pages 207{216, Washington,
D.C., May 1993.

[5] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A. I. Verkamo. Fast Discovery of Association Rules. In
U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors, Advances in Knowledge
Discovery and Data Mining, chapter 12, pages
307{328. AAAI/MIT Press, 1996.

[6] R. Agrawal and R. Srikant. Fast Algorithms for
Mining Association Rules. Research Report RJ 9839,
IBM Almaden Research Center, San Jose, California,
June 1994.

[7] R. Agrawal and R. Srikant. Privacy preserving data
mining. In Proc. of the ACM SIGMOD Conference on
Management of Data, pages 439{450, Dallas, Texas,
May 2000.

[8] R. Bayardo. E�ciently mining long patterns from
databases. In Proc. of the ACM SIGMOD Conference
on Management of Data, Seattle, Washington, 1998.

[9] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classi�cation and Regression Trees.
Wadsworth, Belmont, 1984.

[10] Business Week. Privacy on the Net, March 2000.
[11] C. Clifton and D. Marks. Security and privacy

implications of data mining. In ACM SIGMOD
Workshop on Research Issues on Data Mining and
Knowledge Discovery, pages 15{19, May 1996.

[12] R. Conway and D. Strip. Selective partial access to a
database. In Proc. ACM Annual Conf., pages 85{89,
1976.

[13] L. Cranor, J. Reagle, and M. Ackerman. Beyond
concern: Understanding net users' attitudes about
online privacy. Technical Report TR 99.4.3, AT&T
Labs{Research, April 1999.

[14] L. F. Cranor, editor. Special Issue on Internet
Privacy. Comm. ACM, 42(2), Feb. 1999.

[15] The Economist. The End of Privacy, May 1999.
[16] V. Estivill-Castro and L. Brankovic. Data swapping:

Balancing privacy against precision in mining for logic
rules. In M. Mohania and A. Tjoa, editors, Data
Warehousing and Knowledge Discovery DaWaK-99,
pages 389{398. Springer-Verlag Lecture Notes in
Computer Science 1676, 1999.

[17] European Union. Directive on Privacy Protection,
October 1998.

[18] Y. Lindell and B. Pinkas. Privacy preserving data
mining. In CRYPTO, pages 36{54, 2000.

[19] T. M. Mitchell. Machine Learning, chapter 6.
McGraw-Hill, 1997.

[20] O�ce of the Information and Privacy Commissioner,
Ontario. Data Mining: Staking a Claim on Your
Privacy, January 1998.

[21] J. R. Quinlan. Induction of decision trees. Machine
Learning, 1:81{106, 1986.

[22] A. Shoshani. Statistical databases: Characteristics,
problems and some solutions. In VLDB, pages
208{213, Mexico City, Mexico, September 1982.

[23] K. Thearling. Data mining and privacy: A con
ict in
making. DS*, March 1998.

[24] Time. The Death of Privacy, August 1997.

[25] J. Vaidya and C. W. Clifton. Privacy preserving

association rule mining in vertically partitioned data.
In Proc. of the 8th ACM SIGKDD Int'l Conference on
Knowledge Discovery and Data Mining, Edmonton,
Canada, July 2002.

[26] S. Warner. Randomized response: A survey technique
for eliminating evasive answer bias. J. Am. Stat.
Assoc., 60(309):63{69, March 1965.

[27] A. Westin. E-commerce and privacy: What net users
want. Technical report, Louis Harris & Associates,
June 1998.

[28] A. Westin. Privacy concerns & consumer choice.
Technical report, Louis Harris & Associates, Dec.
1998.

[29] A. Westin. Freebies and privacy: What net users
think. Technical report, Opinion Research
Corporation, July 1999.

APPENDIX

A. PROOFS

A.1 Proof of Statement 1

Proof. Each coordinate N � s0l0 of the vector in (4) is,
by de�nition of partial supports, just the number of trans-
actions in the randomized sequence T 0 that have intersec-
tions with A of size l0. Each randomized transaction t0 con-
tributes to one and only one coordinate N � s0l0 , namely to
the one with l0 = #(t0 \ A). Since we are dealing with a
per-transaction randomization, di�erent randomized trans-
actions contribute independently to one of the coordinates.
Moreover, by item-invariance assumption, the probability
that a given randomized transaction contributes to the co-
ordinate number l0 depends only on the size of the original
transaction t (which equals m) and the size l of intersection
t \A. This probability equals p [l ! l0].
So, for all transactions in T that have intersections with A

of the same size l (and there are N �sl such transactions) the
probabilities of contributing to various coordinates N �s0l0 are
the same. We can split all N transactions into k+1 groups
according to their intersection size with A. Each group con-
tributes to the vector in (4) as a multinomial distribution
with probabilities

(p [l! 0] ; p [l ! 1] ; : : : ; p [l ! k]);

independently from the other groups. Therefore the vector
in (4) is a sum of k + 1 independent multinomials. Now it
is easy to compute both expectation and covariance.
For a multinomial distribution (X0;X1; : : : ;Xk) with pro-

babilities (p0; p1; : : : ; pk), where X0 + X1 + : : : + Xk = n,
we have E Xi = n � pi and

Cov (Xi;Xj) = E (Xi � pi)(Xj � pj) = n � (pi�i=j � pipj):

In our case, Xi = l's part of N � s0i, n = N � sl, and
pi = p [l ! i]. For a sum of independent multinomial distri-

butions, their expectations and covariances add together:

E (N � s0l0) =
kX
l=0

N � sl � p
�
l ! l0

�
;

Cov (N � s0i;N � s
0
j) =

=
kX
l=0

N � sl� (p [l ! i] � �i=j � p [l! i] � p [l ! j])

Thus, after dividing by an appropriate power of N , the for-
mulae in the statement are proven.

A.2 Proof of Statement 2

Proof. We are given a transaction t 2 T and an itemset
A � I, such that jtj = m, jAj = k, and #(t \ A) = l. In
the beginning of randomization, a number j is selected with
distribution fpm[j]g, and this is what the �rst summation
takes care of. Now assume that we retain exactly j items
of t, and discard m� j items.
Suppose there are q items from t\A among the retained

items. How likely is this? Well, there are
�
m

j

�
possible

ways to choose j items from transaction t; and there are�
l

q

��
m�l
j�q

�
possible ways to choose q items from t \ A and

j � q items from t n A. Since all choices are equiproba-
ble, we get

�
l

q

��
m�l
j�q

���
m

j

�
as the probability that exactly q

A-items are retained.
To make t0 contain exactly l0 items from A, we have

to get additional l0 � q items from A n t. We know that
#(Ant) = k� l, and that any such item has probability � to
get into t0. The last terms in (8) immediately follow. Sum-
mation bounds restrict q to its actually possible (= nonzero
probability) values.

A.3 Proof of Statement 3

Proof. Let us denote

~pl := (p [l! 0] ; p [l ! 1] ; : : : ; p [l ! k])T ;

~ql := (q [l 0] ; q [l 1] ; : : : ; q [l k])T :

Since PQ = QP = I (where I is the identity matrix), we
have

kX
l=0

p [l! i] q [l j] =
kX

l0=0

p
�
i! l0

�
q
�
j l0

�
= �i=j :

Notice also, from (7), that matrix D[l] can be written as

D[l] = diag(~pl)� ~pl ~pl
T ;

where diag(~pl) denotes the diagonal matrix with ~pl-coord-

inates as its diagonal elements. Now it is easy to see that

~s = ~qk
T ~s 0 =

kX
l0=0

q
�
k l0

�
� s0l0 ;

Var ~s =
1

N

kX
l=0

sl ~qk
T D[l] ~qk =

=
1

N

kX
l=0

sl ~qk
T (diag(~pl)� ~pl ~pl

T) ~qk =

=
1

N

kX
l=0

sl (~qk
T diag(~pl) ~qk � (~pl

T ~qk)
2) =

=
1

N

kX
l=0

sl
� kX
l0=0

p
�
l! l0

�
q
�
k l0

�2
� �l=k

�
;

(Var ~s)est =

=
1

N

kX
l=0

(~ql
T ~s 0)

� kX
l0=0

p
�
l ! l0

�
q
�
k l0

�2
� �l=k

�
=

=
1

N

kX
j=0

s0j
� kX
l;l0=0

q [l j] p
�
l! l0

�
q
�
k l0

�2
�

�
kX
l=0

�l=k q [l j]
�
=

1

N

kX
j=0

s0j
� kX
l0=0

�l0=j q
�
k l0

�2
�

� q [k j]
�
=

1

N

kX
j=0

s0j
�
q [k j]2 � q [k j]

�
:

A.4 Proof of Statement 4

Proof. We prove the left formula in (13) �rst, and then
show that the right one follows from the left one. Consider
N � �l; it equals

N ��l = N �
X

C�A; jCj= l

suppT (C) =
X

C�A; jCj= l

fti 2 T j C � tig =

=
NX
i=1

fC � A j jCj = l; C � tig:

In other words, each transaction ti should be counted as
many times as many di�erent l-sized subsets C � A it
contains. From simple combinatorics we know that if j =
#(A \ ti) and j > l, then ti contains

�
j

l

�
di�erent l-sized

subsets of A. Therefore,

N ��l =
NX
i=1

#(A \ ti)

l

!
=

=
kX
j=l

j

l

!
�#fti 2 T j #(A\ ti) = jg =

kX
j=l

j

l

!
N � sj;

and the left formula is proven. Now we can check the right
formula just by replacing the �j's according to the left for-

mula. We have:

kX
j=l

(�1)j�l

j

l

!
�j =

kX
j=l

(�1)j�l

j

l

!
kX
q=j

q

j

!
sq =

=
X

l6j6q6k

(�1)j�l

j

l

!
q

j

!
sq =

kX
q=l

sq

qX
j=l

(�1)j�l

j

l

!
q

j

!

=
kX
q=l

sq

q�lX
j0=0

(�1)j
0 (j0 + l)!

l! j0!

q!

(j0 + l)! (q � j0 � l)!
=

=
kX
q=l

sq �
q!

l! (q � l)!

q�lX
j0=0

(�1)j
0 (q � l)!

j0! (q � l � j0)!
=

=
kX
q=l

sq

q

l

!
q�lX
j0=0

(�1)j
0

q � l

j0

!
= sl;

since the sum

q�lX
j0=0

(�1)j
0

q � l

j0

!
is zero whenever q� l > 0.

To prove that matrix P becomes lower triangular after
the transformation from ~s and ~s 0 to ~� and ~� 0, let us �nd
how E ~� 0 depends on ~� using the de�nition (12).

E �0
l0 =

X
C�A; jCj= l0

E suppT
0

(C) =

=
X

C�A; jCj= l0

l0X
l=0

pm
l0

�
l! l0

�
� suppTl (C) =

=
X

C�A; jCj= l0

l0X
l=0

pm
l0

�
l ! l0

� l0X
j=l

(�1)j�l

j

l

!
�j(C;T) =

=
l0X
j=0

jX
l=0

(�1)j�l

j

l

!
pm
l0

�
l ! l0

�
| {z }

cl0 j

X
C�A; jCj= l0

�j(C;T) =

=
l0X
j=0

cl0 j
X

C�A; jCj= l0

X
B�C; jBj= j

suppT (B) =

=
l0X
j=0

cl0 j
X

B�A; jBj = j

#fC j B � C � A; jCj = l0g � suppT (B) =

=
l0X
j=0

cl0 j
X

B�A; jBj = j

k�j

l0�j

!
suppT (B) =

l0X
j=0

cl0 j

k�j

l0�j

!
��j:

Now it is clear that only the lower triangle of the matrix can
have non-zeros.

