A Reusable Platform for Building
Sovereign Information Sharing Applications

Rakesh Agrawal, Dmitri Asonov, Priya Baliga,
Linus Liang, Beate Porst, Ramakrishnan Srikant

IBM Almaden Research Center, San Jose, CA 95120

ABSTRACT

Sovereign information sharing allows autonomous orga-
nizations to compute queries across databases in such
a manner that nothing but the result is revealed. We
present the design of a platform that can be used for
building sovereign information sharing applications effi-
ciently and quickly. In addition to the core protocols,
the platform incorporates components for resource dis-
covery, schema mapping, authentication, and hardware-
assisted performance enhancement. We also describe a
national security application we have built using this
platform that shows the practicality of sovereign infor-
mation sharing in virtual organizations.

1. INTRODUCTION

Current information integration techniques for virtual
organizations require participants to reveal all data nec-
essary to process a query. Consequently, information
sharing is inhibited due to security and privacy con-
cerns. The goal of Sovereign Information Sharing (SIS)
technology [8, 9] is to enable the computation of queries
across autonomous data sources in such a way that no
information other than the query results is revealed.

Examples where this technology may be beneficial in-
clude:

e Homeland Security For national security, it
may be necessary to check if any of the airline pas-
sengers are on the suspect list of a federal agency
[14]. The agency may use SIS to find the names
of only those passengers who are on the suspect
list, without obtaining information about all pas-
sengers from the airline, or revealing the suspect
list to the airline.

e Health Care In epidemiological research, a med-
ical researcher may want to know whether there is
a correlation between a certain DNA sequence and
a reaction to a drug, which may require joining
DNA information from a genebank with patient
records from a hospital. However, hospitals dis-
closing patient information could violate privacy
protection laws, such as HIPAA [3]. Similarly,

First Workshop on Databases in Virtual
Organizations, June 2004, Paris, France.

gene banks may also have privacy constraints on
disclosing the information. Using SIS, we can en-
sure that only statistics about correlations between
adverse reactions and DNA patterns is revealed.

We present a SIS platform that can be used for build-
ing such applications efficiently and quickly. Section 2
gives an overview of the platform. In Section 3 we de-
scribe different approaches for schema mapping. We
discuss resource discovery issues in Section 4 and au-
thentication mechanisms in Section 5. In Section 6 we
describe the SIS prototype in terms of the homeland se-
curity scenario described earlier. We discuss techniques
for performance improvements in Section 7 and close
with a summary in Section 8. This paper refines and
extends the ideas presented in [8].

2. ARCHITECTURE OVERVIEW

1
: Organization
1 Boundary
Application :
Developer 1
1
i
L e,
1
| SIS Platform
+ Client 1
| | Metadata !
Lo ____> 1
I======== _________I
SIS Server 1 1
1
Data 1
1
1
1
1
1

SIS Server 2 SIS Server n

Data Data

Provider Provider
Application database Application database
meta data meta data
Lo === cmm—m— = — = e e

Figure 1: Sovereign Information Sharing archi-
tecture.

Each autonomous organization (data provider) par-
ticipating in sovereign sharing uses the SIS platform to

offer services for applying operations on their data. Ap-
plications are developed by composing these services.

Figure 1 shows the architecture of our SIS platform.
It comprises of:

e SIS Server The SIS server provides the necessary
functionality on the data provider side to enable
sovereign information sharing. This includes com-
ponents for query processing (cryptographic proto-
cols for basic operations), access verification, data
encryption, and communication with other data
providers. It also binds applications to purposes
for a purpose-based access control mechanism [10].

The server also maintains metadata needed for
processing a query issued by an application, in-
cluding view information to retrieve data from the
data provider database, database access informa-
tion, and context information.

e SIS Client The SIS client provides the neces-
sary functionality to map the application schema
to data providers’ schemas, construct and invoke
web service query requests against multiple data
providers, and receive web service responses. The
SIS client uses the client metadata database to
store and retrieve mapping information and data
provider access information.

e SIS Application An application is a thin layer
on top of the SIS client, which invokes the required
SIS operations. For example, an application pro-
viding epidemiological results for drug reactions
may invoke intersection size operations multiple
times applying different filter predicates. The ap-
plication also provides a communication interface
to a SIS user and interacts with the SIS client using
the SIS client API.

3. SCHEMA MAPPING

The heterogeneity of autonomous organizations makes
schema mapping essential for a system providing infor-
mation sharing. We analyze below the different ap-
proaches to schema mapping that can be used for provid-
ing a consistent vocabulary for developing applications
on our SIS platform.

1. Federated Data providers make their metadata
information available at some known locations (e.g.
by publishing to a UDDI [6]). Any schema map-
ping and identification of relationships between data
of different organizations is the responsibility of
the application developer.

e Pros: This approach requires minimal effort
on part of data providers, and it is consis-
tent with the schema publication schemes of
federated databases such as DB2 Information
Integrator [1].

e Cons: The schema mapping work is entrusted
to the application developer. Identifying re-
lationships can become difficult if the schema
names are not self-descriptive or are ambigu-
ous.

2. Global This approach assumes that a standard
global schema for the domain of interest exists
(e.g. RosettaNet [2]), which is used by the data
providers to publish the logical view of their meta-
data.

e Pros: Application developers can use the stan-
dard domain schema to develop client appli-
cations and do not have to deal with schema
mappings.

e Cons: A globally accepted domain schema
may not exist for all domains. Also, this ap-
proach transfers the work of the schema map-
ping to the data providers.

3. Application specific The schema mappings be-
tween an application’s schema and the data provider’s
schema is done by the data providers, separately
for each application.

e Pros: Convenient for application developers
when there is no global schema available.

e Cons: The data providers need to map schemas
for all applications and they have to apply all
changes made later by application developers
for a certain application.

We use the federated approach in our implementa-
tion because it places minimal burden on data providers
and provides them with maximum autonomy and de-
coupling.

4. RESOURCE DISCOVERY

To build an application on top of the SIS platform, an
application developer should be able to find all relevant
data providers that offer the required data service, and
to infer details about the format and extent of infor-
mation that the providers are willing to share. We use
the UDDI registry for this purpose. UDDI is a public
registry that contains cataloged information in an easy-
to-search format.

We use two UDDI elements: Business Entities to rep-
resent data providers and Business Services to represent
services offered by data providers. When a data provider
decides to share certain parts of its database, a Busi-
ness Entity is created and published on the UDDI. The
Business Entity contains information such as the name
of the organization, its contact information, and a brief
description of the organization.

Business Entities provide developers a way to contact
data providers, and negotiate access to data. Whether
a particular piece of information will be shared or not
depends in large part on the purpose for which the data
will be used. For example, in an application designed to
identify potential candidates for an experimental drug,
a gene bank may share the names of those clients who
have opted-in for experimental drug testing. However,
in an application designed to compute statistics about
the correlation between DNA patterns and diseases, the
gene bank will use a different protocol [9], thereby en-
suring that only statistics and no personally identifiable
information is revealed.

5 } Provider 1 @ Provider 2
User: Bob
Access Certified by AA Access
Manager | g/Veb eriiied by Manager

Request | certified by SA

\ Web Service
Response

Token Validation
uoneplfeA usyoL

Authentication Authority (AA)

@) ©

A

User: Bob

Certified by AA

uaxo) Buneonusyiny

User: Bob

Authenticate Bob

Certified by AA

Client application

Username: Bob
Password: ****

Figure 2: Authentication architecture.

Each Business Entity can contain one or more Busi-
ness Services. Each service contains an XML description
of the schema of the data the provider is willing to share,
including table names, column names, and constraints.

A developer wanting to create, say, an epidemiological
research application can search the UDDI for all hospi-
tals and all gene banks that are offering data sharing
services. She can then look up the XML schema de-
scription to ascertain whether the provider is willing to
share the pertinent information. Finally, she can contact
the providers of interest (using the contact information
from the Business Entities) and negotiate the use of their
data for the application.

5. AUTHENTICATION

Designing a single sign-on for our architecture was
challenging because of two reasons. Firstly, after the
initial call to the first data provider, all subsequent calls
to other data providers are made by the SIS platform
without any user intervention. We therefore need to
establish “portable trust” for the user across multiple
domains. Secondly, we use web services to perform all
communication, but standards for web services security
[5] have not yet been widely adopted.

Our solution (see Figure 2) is to establish a central
authentication authority (AA) that keeps track of all
registered users of the SIS platform. When a user wants
to use SIS, she provides her credentials to the applica-
tion (Step 1), which in turn contacts the authentication
authority (Step 2). If the user is valid, the AA returns a
digitally signed authentication token (Step 3). The to-
ken consists of an assertion of the user’s identity, the is-

suer’s identity, the timestamp and validity of the token,
and information about the user’s authorization group.
The token is built in the form of an XML document and
digitally signed by the AA to assert authenticity. All
communications are encrypted to avoid snooping.

The application includes the authentication token in
all subsequent web service requests (Steps 4 and 6).
The data providers can verify the user’s access privi-
leges based on the attributes of the user specified in the
token (Steps 5 and 7). For all web service requests ini-
tiated by the SIS platform, a new token is created by
embedding the AA’s digitally signed token in a master
token that is then digitally signed by the sender (Step
6).

6. USAGE SCENARIO

The Transportation Security Administration (TSA)
may seek airlines to provide passenger information to
test a new counter-terrorism program [14]. In order to
comply with TSA’s request, airlines would have to share
their entire passenger list with the TSA. This would
compromise the privacy of their passengers. On the
other hand, the SIS platform can enable an airline (AL)
to reveal the names of only those passengers who appear
on the TSA’s suspect list.

We will use the above scenario to illustrate how an
application can be built using the SIS platform. This
simplified application makes use of the SIS set intersec-
tion protocol [9, 12, 13].

6.1 Protocol

Assume tables R and S, belonging to sovereign parties
A and B, have one column each. The following protocol
will enable A to learn nothing about S but the intersec-
tion R N 'S (and |S|), while B learns nothing about R
(but |RJ), given a commutative encryption function E:

1. A encrypts table R into E4(R) and sends it to B.

2. B encrypts table S into Eg(S) and sends it to A.

3. Bencrypts table E4(R) received from A into Eg(E4(R)),

and sends pairs of records (Ea(r), Eg(Ea(r))) to
A, where r € R.

4. A computes Zs = E4(Eg(S)) = Eg(Ea(9)).

5. For every pair (E4(r), Es(Ea(r))), A replaces Ea(r)
with corresponding r, obtaining a set of pairs (r,
Ep(Ea(n))).

6. A selects all r, for which Eg(EA(r)) € Zg, which
equals R N S.

6.2 Schema Publishing

1. TSA maintains a private UDDI as a metadata repos-
itory. This repository is intended to be used by air-
lines to publish business and schema information
to be shared with TSA. Every participating airline
creates in this UDDI a Business Entity containing
general business information about itself. It also
creates a Business Service entry for each service

<Sii_DataProvider>
<Table Name="PassengerList" Schema="AL">
<Column>
<Name>PassengerName</Name>
<Description/>

<DataType>VARCHAR</DataType>
<Binary>false</Binary>

</Column>

<Column>
<Name>0OriginAirport</Name>
<Description/>
<DataType>VARCHAR< /DataType>
<Binary>false</Binary>

</Column>

</Table>
</Sii DataProvider>

<Sii_DataProvider>
<Table Name="SuspectList" Schema="TSA">
<Column>
<Name>SuspectName< /Name>
<Description/>
<DataType>VARCHAR</DataType>
<Binary>false</Binary>
</Column>
<Column>
<Name>Citizenship</Name>
<Description/>
<DataType>VARCHAR< /DataType>
<Binary>false</Binary>
</Column>
</Table>
</S8ii DataProvider>

Figure 3: AL schema information.

offered. This entity includes schema information
about data the airline is willing to share. The SIS
platform provides a graphical interface to publish
and retrieve business and schema information.

2. AL publishes schema information about passenger
data within a new Business Service called “Pas-
senger Information”. Figure 3 shows a section of
the schema information published by AL.

3. TSA similarly publishes part of its own schema
(see Figure 4).

6.3 Negotiation

In an off-line step, TSA negotiates with AL about the
specific use of AL’s passenger data. As a result, AL
agrees to allow TSA to use its data as follows:

e PassengerName will only be used as an intersec-
tion column (to learn the common names in the
two databases).

e PassengerName cannot be used as a filter argu-
ment (i.e., in a selection predicate).

e As part of the negotiation, the TSA agrees that
the use of the intersection results will be limited
to the purpose of identifying suspects.

6.4 Schema M apping

An application developer on behalf of the TSA looks
for the column name and table name in the AL’s data-
base that correspond to the SuspectName column and
SuspectList table in the TSA’s database. The developer
identifies PassengerName from PassengerList table as
the corresponding column and table. The developer
then decides to perform an intersection operation be-
tween PassengerName column from AL’s PassengerList
table and SuspectName column from TSA’s SuspectList
table.

6.5 Metadata Storage

Figure 4: TSA schema information.

1. TSA stores the following metadata in its SIS server
metadata database:
e Application name: TSA_AL_App.

e View information: to access and retrieve Sus-
pectName from table SuspectList.

e Column rules ! for SuspectName:

— will be used as an intersection column;
— cannot be used in a filter argument;
— can be returned if in intersection result.
e Supported operations: Intersection.
e Access privileges: Application accessible to

members of group: TSA_AL.

2. AL stores the following metadata in its SIS server
metadata database:
e Application name: TSA_AL_App.

e View information: to access and retrieve Pas-
sengerName from table PassengerList.

e Column rules for PassengerName:

— will be used as an intersection column;
— cannot be used in a filter argument;
— can be returned if in intersection result.

e Supported operations: Intersection.

e Access privileges: Application accessible to
members of group: TSA_AL.

6.6 Application Development

1. The SIS platform includes templates for informa-
tion integration applications. The application de-
veloper creates a new application, TSA_AL_App.

LColumn rules define in which part of an SQL query the
column can be used.

Encryption Engine number of records
1,000 | 5,000 | 10,000

CPU Intel III 2.0 Ghz 34s 175s 320s

AEP Runner 2000 3.5s 19s 37s

Table 1: Execution times for encryption UDFs.

2. She sets the template values for the Data Providers
as TSA and AL, and sets the SIS operation to
be performed to Intersection. She indicates that
column PassengerName in AL’s database corre-
sponds to column SuspectName in TSA’s database
and will be used as the intersection column.

3. Finally, she creates a new user group called TSA_AL,
and adds the authorized users from TSA. The au-
thorization information is stored in the Authenti-
cation Authority’s database.

6.7 Execution

For an intersection operation between TSA and AL
the protocol performs the following steps to compute
the result:

1. TSA encrypts the values of SuspectName column
of SuspectList table using the commutative en-
cryption function.

2. It sends an intersection web-service request to AL,
with the encrypted SuspectList table as an attach-
ment [8].

3. AL performs its part of the protocol by encrypting
the values of PassengerName column of Passen-
gerList table and double-encrypting SuspectList ta-
ble from TSA. It then sends a web-service response
to TSA with both encrypted tables as attachments.

4. TSA performs a double-encryption of the Passen-
gerList table from AL. Finally, it uses both double-
encrypted tables to perform the intersection opera-
tion between SuspectNames and PassengerNames,
and returns the results to the application.

7. PERFORMANCE

Encryption time dominates the performance of the
SIS Operations [8].> The encryption algorithm we use
requires modular exponentiation [9]. We discuss the use
of AEP Runner 2000 SSL cards [4] to speed up expo-
nentiation. These cards are commercially available and
cost about US $2000.

Our implementation employs a User Defined Function
(UDF) [11] to perform encryption. A standard scalar
UDF has a scope over only one row from an input table
at a time. However, AEP Runner can gain the adver-
tised speeds only if multiple (100-200) threads simulta-
neously post exponentiation requests to the card’s API.

2However, other components may also become compu-
tationally expensive if not implemented carefully. For
instance, we discovered that parsing database tables into
XML web service arguments using Axis SOAP engine [7]
requires more time than encryption. To avoid parsing
the tables, we attach tables as binary files.

Therefore, we used a table UDF that can operate on
several input rows at a time. It fetches k rows at a time,
and creates a separate thread for each row. Once all
threads have finished, the encrypted rows are returned
to the database and next k rows are fetched.

Our experiments show that AEP Runner can signif-
icantly speed up the execution of the UDF performing
encryption (Table 1).

An additional feature of the AEP Runner APT is that
an application does not have to know how many cards
are installed in the computer. The AEP scheduler dis-
tributes exponentiation requests between the cards au-
tomatically. Thus, we can expect a linear speed up with
the increasing number of cards.

8. SUMMARY

Sovereign information sharing is useful for the cre-
ation of any virtual organization where the parties do
not completely trust each other, or there are privacy
and security concerns about the sharing of information.
We described the architecture of the sovereign informa-
tion sharing platform that we have built, and the ratio-
nale behind our design choices. In addition to the core
algorithms, our platform also incorporates components
for resource discovery, schema mapping, and authenti-
cation, thereby enabling rapid developments of SIS ap-
plications. We also showed that the use of encryption
cards significantly improves performance.

Acknowledgements

This work was done as part of the SII Extreme Blue
project, sponsored by Laura Haas, Nelson Mattos, and
Dan Shiffman. Our thanks to Deon Glajchen, Tyrone
Grandison, Jerry Kiernan, Amit Somani, and the Al-
maden Extreme Blue Staff, particulary Dave Cheney,
for their help and insights.

9. REFERENCES

[1] DB2 Information Integrator. http://www-306.
ibm.com/software/data/integration/.

[2] RosettaNet. http://www.rosettanet.org.

[3] Health insurance portability and accountability
act. http://www.hhs.gov/ocr/hipaa/, 1996.

[4] SSL Accelerators, Interactive Buyer’s Guide.
http://ibg.networkcomputing.com/ibg/Guide?
guide_id=4065, Nov. 2002.

[5] Web Services Security (WS-Security).
http://www-106.1ibm.com/developerworks/
webservices/library/ws-secure/, Apr. 2002.

[6] UDDI Spec Technical Committee Specification.
http://uddi.org/pubs/uddi_v3.htm, Oct. 2003.

[7] Apache Axis SOAP engine.
http://ws.apache.org/axis/, Apr. 2004.

[8] R. Agrawal, D. Asonov, and R. Srikant. Enabling
sovereign information sharing using web services.
In Proceedings of ACM SIGMOD, June 2004.

[9] R. Agrawal, A. Evfimievski, and R. Srikant.
Information sharing across private databases. In
Proceedings of ACM SIGMOD, June 2003.

[10] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu.
Hippocratic databases. In Proceedings of the 28th
VLDB Conference, Hong Kong, China, Aug. 2002.

[11] D. Chamberlin. A Complete Guide to DB2
Universal Database. Morgan Kaufmann, 1998.

[12] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin,
and M. Y. Zhu. Tools for privacy preserving data
mining. SIGKDD Ezplorations, 4(2):28-34, Aug.
2002.

[13] B. A. Huberman, M. Franklin, and T. Hogg.
Enhancing privacy and trust in electronic
communities. In Proc. of the 1st ACM Conference
on FElectronic Commerce, pages 78-86, Denver,
Colorado, November 1999.

[14] T. Kontzer. Airlines and hotels face customer
concerns arising from anti-terrorism efforts.
Information Week,
http: //www. informationweek. com/ story/
showArticle. jhtml? articleID=184010%179,
Mar. 2004.

